Physiology and Biochemistry

Selective Toxicity of Isoflavonoid Phytoalexins to Gram-Positive Bacteria

Samuel S. Gnanamanickam and David A. Smith

Visiting scientist and lecturer, respectively, Department of Plant Biology, The University of Hull, Hull, HU6 7RX, United Kingdom. Present address of senior author: Center for Advanced Study in Botany, University of Madras, Madras 600005, India. Present address of second author: Department of Plant Pathology, The University of Kentucky, Lexington 40546, USA. The senior author held a fellowship from the British Council under the Young Scientists Exchange Programme. Accepted for publication 6 March 1980.

ABSTRACT

The isoflavonoid phytoalexins, kievitone and phaseollin, were found to be selectively toxic to Gram-positive bacteria. In a standard paper-disk bioassay, 10-50 μg kievitone or phaseollin inhibited the growth of all seven Gram-positive, but none of the eight Gram-negative, bacteria tested. Phaseollidin and phaseollinisoflavan also possessed such selective toxicity to Gram-positive bacteria. Further assays showed that even 2 μg kievitone (0.56 × 10^-7 mole), which proved to be the most toxic of the compounds examined, inhibited the growth of Corynebacterium fascians, Bacillus subtilis, and Micrococcus luteus.

Additional key word: antibiotic.

Phytoalexins have been defined as antibiotics that are produced by interacting plant host and parasite metabolic systems, and inhibit the growth of microorganisms pathogenic to plants (9). Most research into phytoalexins has established that these compounds are toxic to fungi (4,12,17) and it has been hypothesized that they play an important role in disease resistance in some plants (4).

Several of the isoflavonoid phytoalexins (17) also have been found in association with the hypersensitive response (HR) exhibited by plants in response to bacterial invasions (6,8,10,15). Results of in vitro bioassays showed that phytoalexins of soybean and French bean were toxic to Pseudomonas glycinea and P. phaseolicola (6-8). However, the results from a similar study made by Wyman and VanEtten (19) did not entirely confirm the above findings. Therefore, the effects of isoflavonoids against plant pathogenic bacteria remain uncertain.

In the present study, we examined the sensitivity of several species of plant pathogenic and saprophytic bacteria to isoflavonoid phytoalexins from French bean. Our results suggested that isoflavonoids are toxic to Gram-positive, but not Gram-negative, bacteria.

MATERIALS AND METHODS

Bacterial strains. The 15 species of bacteria (eight Gram-negative and seven Gram-positive) used in this study are described in Table 1.
Antibiotic assay. A paper-disk method was used. The antibiotic assay disks (Whatman A. A. disks, 0.6 cm diameter) were loaded with a prescribed amount of the phytoalexin in absolute ethanol (maximum volume, 25 μl). In each plate, there was a control disk treated with 25 μl of ethanol alone. In all cases, sufficient time was allowed for the ethanol to evaporate before transferring the disks to agar surfaces. The disks were arranged in petri dishes containing a bottom layer of nutrient agar (Oxoid) and a top layer of soft agar (nutrient agar with 0.75% agar) seeded with the test bacteria. Each bacterial strain was grown at 30°C for 16 hr in nutrient broth. One hundred microliters of the culture (~10⁶ cells per milliliter) were added to 2 ml of molten soft agar (45°C), mixed thoroughly and poured over the nutrient agar surface. Plates were incubated at 30°C and diameters of inhibition zones were measured after 20 hr.

Results in Table 1 represent mean values of two separate experiments.

Isoflavonoid phytoalexins. Phaseollin (a pterocarpian) and kievitone (an isoflavon) used in this study were extracted from bean hypocotyl lesions infected with *Rhizoctonia solani* Kühn, or rotting cowpea seeds, as described elsewhere (12, 14). These compounds were used in preliminary assays at 50, 100, and 200 μg/disk and subsequently at 10, 20, 30, 40, and 50 μg/disk. These latter amounts represent 2.8 × 10⁻³, 5.6 × 10⁻³, 8.4 × 10⁻³, 1.1 × 10⁻², and 1.4 × 10⁻² mol of phaseollin per disk and 8.1 × 10⁻⁴, 6.2 × 10⁻⁴, 9.3 × 10⁻⁴, 1.2 × 10⁻³, and 1.6 × 10⁻³ mol of kievitone per disk. Two more isoflavonoid phytoalexins, phaseollin and phaseollinoside (an isoflavane) also were included in one set of assays against three Gram-positive and three Gram-negative bacteria. These compounds were tested at 25 and 50 μg/disk. Phaseollinoside, like phaseollin, was isolated from *R. solani*-infected beans. Phaseollin was the gift of J. A. Bailey, Long Ashton Research Station, Bristol, U.K.; this material was subjected to one additional thin-layer chromatographic step before use.

RESULTS

Kievitone and phaseollin inhibited all seven Gram-positive bacteria and none of the eight Gram-negative bacteria. The Gram-positive bacteria gave distinct inhibition zones at 10, 30, and 50 μg kievitone and phaseollin (Table 1). Kievitone induced the largest inhibition zones in plates seeded with sensitive bacteria. For example, the areas of kievitone-induced inhibition with *Corynebacterium fascians* were two to three times larger than those induced by phaseollin at the same concentrations (Table 1). In comparable assays, the Gram-negative bacteria generally were insensitive (Table 1). Occasionally, faint areas of inhibition seemed to develop in plates with *Erwinia carotovora*, but these were not consistent and the zones were never clear and consequently were not measured. Examples of typical assays are shown in Fig. 1.

In the preliminary assays with kievitone and phaseollin at 50, 100, and 200 μg, the Gram-negative plant pathogens, *P. phaseolicola* (race 1 and 2), *Xanthomonas campestris*, *Aegobacterium tumefaciens*, and *E. carotovora* were not inhibited. On the other hand, less than 6 μg kievitone and phaseollin inhibited the Gram-positive bacteria, *C. fascians*, *Bacillus subtilis*, and *Micrococcus luteus*. In two separate experiments, *C. fascians* was inhibited by 2 μg (0.56 × 10⁻³ mol) of kievitone and the inhibition zone measured 25 mm². Phaseollin was toxic to *C. fascians* at 3 μg

![Fig. 1. Inhibition of growth of C. fascians by A, kievitone or B, phaseollin at 10-50 μg/disk and of M. luteus by C, kievitone at 1-6 μg/disk. Lack of growth inhibition in X. campestris by D, kievitone at 10-50 μg/disk.](image)

| TABLE I. Differential response of Gram-negative and Gram-positive bacteria to kievitone and phaseollin |
|---|---|---|
| | Area of inhibition (mm²) * | | |
| | Kievitone (μg/disk) | Phaseollin (μg/disk) |
| | 10 | 30 | 50 | 10 | 30 | 50 |
| Gram-negative: | | | | | | |
| *Erwinia carotovora* var. *carotovora* | 468 (NCPPB)* | 0 | 0 | 0 | 0 | 0 |
| *E. carotovora* var. *atrosequica* | 549 (NCPPB) | 0 | 0 | 0 | 0 | 0 |
| *Pseudomonas phaseolicola*, race 1 | 1098 (NCPPB) | 0 | 0 | 0 | 0 | 0 |
| *P. phaseolicola*, race 2 | 882 | 0 | 0 | 0 | 0 | 0 |
| *Agrobacterium radiobacter* var. *tumefaciens* | 2270 (NCPPB) | 0 | 0 | 0 | 0 | 0 |
| *Escherichia coli* | B6 (HCC)* | 0 | 0 | 0 | 0 | 0 |
| *Salmonella typhimurium* | HU 103 (HCC) | 0 | 0 | 0 | 0 | 0 |
| *Xanthomonas campestris* | 529 (NCPPB) | 0 | 0 | 0 | 0 | 0 |
| Gram-positive: | | | | | | |
| *Corynebacterium fascians* | 1675 (NCPPB) | 137 | 289 | 337 | 59 | 95 | 126 |
| *Bacillus subtilis* | 1246 (NCPPB) | 50 | 90 | 106 | 8 | 32 | 39 |
| *B. megaterium* | B2 (HCC) | 48 | 85 | 101 | 8 | 22 | 35 |
| *Micrococcus luteus* | B15 (HCC) | 115 | 193 | 227 | 5 | 29 | 32 |
| *M. roseus* | B7 (HCC) | 79 | 180 | 353 | 16 | 29 | 32 |
| *Streptomyces griseus* | B21 (HCC) | 85 | 143 | 416 | 10 | 39 | 63 |
| *Myxobacterium philip* | B8 (HCC) | 76 | 129 | 144 | 38 | 53 | 60 |

*Area of inhibition = (area of total inhibition-area of disk); each value is the mean of duplicate values rounded off to the nearest whole number. Assay disks were placed on the surface of petri dishes with a bottom layer of nutrient agar and an upper layer of soft (0.75%) nutrient agar seeded with the test bacteria.

NCPPB = National Collection of Plant Pathogenic Bacteria, Harpenden, Herts, U.K.

J. D. Taylor, National Collection of Plant Pathogenic Bacteria, Wellesbourne, U.K.

HCC = Culture Collection at the Department of Plant Biology, The University, Hull, HU6 7RX, U.K.
(0.93 × 10^4 mole), but the area of inhibition was only 10 mm². At 2 μg kievitone and 4 μg phaselolin, growth of B. subtilis and M. luteus was inhibited (Fig. 1C).

Phaseollin, isoflavone and phaseollin, each at 25 and 50 μg, were also toxic to the growth of the Gram-positive bacteria assayed, C. fascians, B. subtilis, and M. luteus. The Gram-negative bacteria tested, P. phaseolicola (race 1), X. campestris and Salmonella typhimurium, were not inhibited.

Control disks were not inhibitory to the growth of any of the 15 species of bacteria.

DISCUSSION

The results of this study indicate that Gram-positive bacteria are quite sensitive to isoflavonoids. This was emphasized by as little as 2 μg kievitone inhibiting the growth of Gram-positive bacteria (Fig. 1C) whereas levels as high as 200 μg did not prevent the growth of Gram-negative bacteria. This is the first report that isoflavonoids are selectively toxic to Gram-positive bacteria.

Although previous research on antibacterial assays of isoflavonoids does not show such a clear-cut distinction (1-3,8,16), it is nonetheless evident that Gram-positive bacteria proved to be more sensitive. Brevibacterium linens, a Gram-positive species, was inhibited by six fractions from bean leaf extracts (8). Only three of these were found to be active against P. phaseolicola: phaseolin, coumestrol and erucic acid (38). Although Albersheim and Valenti (1) showed that B. subtilis was more inhibited by glycine than P. glycine.

The comparative insensitivity of Gram-negative species to isoflavonoids was evidenced by Wyman and VanZetten (18,19). However, inconsistencies in the literature make generalizations difficult. Nevertheless, Wyman and VanZetten found relatively little activity against P. phaseolicola. Others have reported that isoflavonoids are toxic to this bacterium (6,10). The principal exception to Gram-negative insensitivity appears to be the genus Rhizobium (1,2).

Although procedural and isolate differences might explain some of the variable results with the isoflavonoids, this cannot always be the case (cf Mycobacterium phlei [2,3]). Because of the inconsistent findings reported, it seems essential that the antibacterial activities of isoflavonoid phytoalexins be re-examined and we hope that the present report might act as the necessary stimulus.

It is perfectly reasonable that isoflavonoids should be more effective against Gram-positive bacteria; antibacterial antibiotics, in general, are more toxic to Gram-positive bacteria. The exceptions, of course, are some of the well-known broad-spectrum antibiotics which affect both Gram-positive and Gram-negative bacteria. The antibiotics which are more toxic to Gram-positive bacteria include the actinomycins, a few of the polymyxins, miconomosporin, micrococin, and others (5). The differences in cell wall complexity may account for the greater sensitivity of the Gram-positive, and less or lack of sensitivity of the Gram-negative, bacteria. Alternatively, the Gram-positive bacteria may possess sensitive membrane sites where isoflavonoids bind irreversibly. It has been hypothesized that kievitone is membrane-lytic on R. solani, a fungal pathogen of bean (13).

The rapid and sensitive method of assay employed in the present study upholds the view (2,3,8,19) that Gram-negative pathogenic bacteria are not very sensitive to isoflavonoid phytoalexins. From our selection of bacteria, however, it is not possible to say whether there is a causal relationship between insensitivity to isoflavonoid phytoalexins and pathogenicity towards plants.

The toxicity of isoflavonoid phytoalexins to Gram-positive bacteria could make them a useful group of compounds in a practical sense. It is conceivable that plant diseases caused by Gram-negative Corynebacterium spp. could be controlled by isoflavonoid treatments, especially with kievitone which is the most toxic of the four compounds tested. The fact that the sensitive C. fascians is very closely related (serologically) to corynebacteria responsible for human and animal diseases (11), and again, the sensitivity of M. phlei, suggest a possible medical value for the isoflavonoids.

LITERATURE CITED