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A large body of literature has accumulated relative to the
concepts of rhizoplane and rhizosphere effects on the incidence of
root diseases in relation to inoculum density in soil. The distinction
between rhizoplane and rhizosphere effects is based on the
mathematical interpretation of Bakeretal (1). They concluded that
in graphs plotting log of number of infections vs. log of inoculum
density, a slope of 1.0 indicates a rhizosphere effect (ie, the
pathogen can attack the root from a distance), whereas a slope of
0.67 indicates a rhizoplane effect (ie, the pathogen propagule must
come in contact with the root for infection to take place).

Vanderplank (4), Gilligan (2), and Grogan et al (3) disputed this
conclusion on the basis that the assumptions of Baker's model are
not valid, and they proposed alternative models. Vanderplank (4)
and Grogan et al (3) treated the rhizoplane as a very small volume
adjacent to the root surface. Gilligan (2) argued that the number of
propagules at the rhizoplane should include all of the propagules
that were originally within the volume occupied by the host root.
These propagules should have come into contact with the root as it
displaced them. Both Gilligan's interpretation and that of
Vanderplank and Grogan et al are based on the assumption that the
rhizoplane effect applies to the propagules within a small volume
that is quantitatively, but not qualitatively, different from the
larger rhizosphere. Accordingly, the slopes of log-log plots of
infections vs. inoculum density should not differ for rhizosphere
and rhizoplane effects.

The difficulty in reconciling the alternative models of
Vanderplank (4), Grogan et al (3), and Gilligan (2) with the model
of Baker et al (1) is that Baker’s model deals with a surface
phenomenon for the rhizoplane effect, whereas the alternative
models treat the rhizoplane effect as a volume phenomenon.
Furthermore, the experimental evidence shows that in many cases
the slopes of the log-log plots are near 0.67 which is predicted by
Baker et al (1) but not by any of the alternative models. On this
basis, it might appear that the biological evidence supports Baker’s
interpretation and that the disputed assumptions in his model
either are appropriate or can be replaced by more valid
assumptions without changing the logical conclusions of the
model.

In their model, Baker et al (1) state that for points arranged ina
regular tetrahedral lattice, the number of points per unit volume is
inversely proportional to the cube of the distance between those
points and their nearest neighbors. That is, /= K,/ D,’, where /s
inoculum density, K, isa constant, and D, is the distance between a
point and its nearest neighbor. The number of points at a surface
(rhizoplane) is inversely proportional to the square of the distance
between points and their nearest neighbors on the surface. That is,
S = K2/ D, where § is the number of points on the surface, K> isa
constant, and D, is the distance between a point and its nearest
neighbor on the surface. Baker’s model is based on the implicit
assumption that D, = D, so that D;=(K2/8)"*=Di=(K:\/ D"’ or
S = KI*" for the rhizoplane effect. Hence, log § = 2/3 log .

The assumption that D; = D; in Baker’s model is valid only if the
surface in question conforms to the location of the points, but not if
the surface exists independent of the points, as a root or seed
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surface does. This can be seen in the case of a spherical seed placed
in a hole and covered with soil. In this example, Gilligan’s
alternative model does not apply, because the volume occupied by
the seed was not previously occupied by pathogen propagules. If
the propagules are arranged in a regular tetrahedral lattice, they
occur in straight lines, but the surface of the seed is curved.
Therefore, it is extremely unlikely for any pair of adjacent points in
the tetrahedral lattice to both occur on the seed surface. Even if they
did, the distance between them along the curved surface would be
greater than the straight line distance between adjacent points.
Thus, D, < D, and Baker’s model is mathematically incorrect,
because it is based on an assumption shown to be invalid.

It might be argued that the assumption D, = D, is not essential to
arrive at the solution of Bakeretal (1) that $= K/**. For instance, if
the ratio D,/ D, were constant over a range of inoculum densities,
the model would give the result § = KI”. There is, however, no
justification for assuming that the ratio D,/ D; will be constant. In
the above example, the nearest distance between points on the
curved surface of a seed is measured along an arc, whereas the
straight line distance between the nearest points is measured along
the chord of that arc. For a spherical seed, an arc of 60° represents a
distance of 7rr/3 in which r is the radius of the seed. The chord of the
60° arc represents a distance equal to r, and the ratio D:/ D: equals
3/m. Anarc of 90° represents a distance of r/ 2, whereas the length
of the chord is (2r%)"/* or approximately 1.4 r, and the ratio Di/ D; is
approximately 2.8/m. Thus, as inoculum density changes, D
changes and the ratio D;/D; changes. Therefore, the model of
Baker et al (1) and their solution that § = K/*’ are both
mathematically incorrect for this example.

The above arguments can be applied to cylindrical roots as well
as to spherical seeds. First, roots are not perfectly straight, so
distances between points on their surface represent arcs rather than
straight lines. Second, even if the roots were perfectly straight, it
would be unreasonable to assume that they would grow in perfect
alignment with the assumed tetrahedral lattice arrangement of
propagules in the soil. Therefore, even in the unlikely event that
the root grew so that it contacted adjacent propagules in the lattice,
the angle between propagules along the circumference of the root
would not be 0. Consequently, the distance between propagules at
the surface would still be measured along an arc. A little reflection
will show that for any type of arc, as the distance between adjacent
points is reduced, the ratio of D,/ D; increases until a limit of 1 is
reached at infinitesimal values of D;.

The above arguments were applied to the biologically unrealistic
assumption of a regular tetrahedral lattice arrangement of
propagules in the soil, but they also would apply to a random
distribution. Distances between points on a root surface would still
be measured along arcs, and distances between points in the soil
would still be measured along straight lines.

If we assume, as Baker et al (1) did, that the rhizoplane effect isa
surface phenomenon rather than a volume phenomenon of the
types envisioned by Vanderplank (4), Grogan et al (3), or Gilligan
(2), we can use a different method to derive the relationship
between S, the number of propagules at the root surface, and /7, the
inoculum density. First, consider a rhizosphere that extends to a
distance b cm from the center of a root Lcmlongand remin radius.
If there are ] spores per cubic centimeter of soil, there will be /
(b’ L—7r’L) spores in the rhizosphere. These spores can be
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thought of as points that occur in a series of nested, cylindrical
shells of infinitesimal width around the root surface. The number of
points per shell at a distance x from the center of the root can be
found by substituting x for b and differentiating the expression /
(mx?L—mr’L) where x is the variable and all other parameters are
constants. This gives the solution 2/mxL points at a distance x cm
from the root center where x=r. That is, as the volume of the shell
at x cm from the root center approaches 0, the number of points in
the shell approaches 2/wxL. For a rhizoplane effect, let x =r, and
the number of spores in contact with the root surface is 2/rrL.
Notice that both the number of spores in the rhizosphere and the
number in the rhizoplane are directly proportional to /, the
inoculum density. Therefore, theoretically a plot of log S vs. log /
should have a slope of 1 regardless of whether there is a rhizosphere
orrhizoplane effect. In actual experiments, however, the value of §
is not determined directly. Instead, the numbers of infections per
plant are estimated from the multiple infection transformation, log
[1/(1=y)], in which y is the proportion of diseased plants. This
transformation is based on the assumptions that propagules are
randomly distributed, that the host plants are all equally
susceptible, that all infections are equally likely to result in
recognizable disease symptoms, and that disease symptoms are as
likely to result from a single infection as from multiple infections.
For many diseases caused by soilborne pathogens, one or more of
these assumptions may not be valid, so the slopes calculated from
plotting log log. [1/(1—y)] vs. log I may deviate from the predicted
value of I.

The above analysis is not intended as an alternative model for
disease intensity—inoculum density relationships for soilborne
pathogens. The purpose is to show that these relationships would
not be qualitatively different for rhizoplane and rhizosphere effects
even if the rhizoplane effect were purely a surface phenomenon. 1
used this approach because | believe that so long as the
mathematics of the model of Baker et al (1) appeared to be valid,
there would always be doubts about the interpretation of any
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biological evidence contrary to their model. In retrospect, the
biological and common sense approaches of Vanderplank (4),
Gilligan (2), and Grogan et al (3) would have been sufficient had it
not been for the mathematical problem. Logically, rhizoplane and
rhizosphere effects could not be qualitatively distinct without any
transition between them. Roots growing through the soil will
contact spores in a volume, not along a plane (2). The distinction
between a spore at 0 distance from aroot and one at an infinitesimal
distance ¢ from the root is biologically meaningless. Slight
vibrations in the soil, expansions and contractions of roots and
spores, and slight elasticity of root and spore surfaces would cause
spores and roots to alternately touch and separate by very small
distances. Increases in root diameter with growth or in seed
diameter with imbibition of water would bring them into contact
with spores not previously at their surface.

Baker’s interpretation of the rhizoplane effect was an
explanation of why plots of estimated numbers of infections vs.
inoculum density often deviate from a straight line. In seeking a
better explanation, we have available a large and valuable body of
information about disease incidence—inoculum density
relationships. Much of this information is available primarily
because of the stimulation supplied by the modeling work of Baker
etal(1). Inscience, innovative thinking is not always correct, but it
is nearly always valuable.
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