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ABSTRACT

PENNYPACKER, S. P., H. D. KNOBLE, C. E. ANTLE, and L. V. MADDEN. 1980. A flexible model for studying plant disease progression,

Phytopathology 70:232-235.

It is desirable for several reasons for epidemiologists to be able to depict
with a single mathematical function the full range of shapes found in disease
progress curves. Because of its simplicity and flexibility of application, the
Weibull probability density function and cumulative distribution can be
applied as such a disease progress model. Disease progress curves

Additional key words: quantitative epidemiology, nonlinear model.

corresponding to “simple interest™ and “compound interest” disease were
accurately fit with the Weibull function. The Weibull model also was used to
depict the full range of shapes possible for disease progress curves. Its
flexibility and accuracy make the Weibull function a useful technique for
modeling plant disease epidemics.

The proportion of diseased plants is a simple measure of disease
progress during the course of an epidemic. Analysis of this type of
data often begins with evaluation of a simple disease progress curve
to identify the pattern of disease increase. The epidemic is then
often characterized by an associated r value, which in
Vanderplank’s (11) terminology is either an “apparent” or
“absolute” infection rate. In this type of analysis one should ask
whether the choice of model is really valid, ie, is the disease increase
really typical of true “simple interest disease” (SID, monomolec-
ular) or “compound interest disease”(CID, logistic) types, ordo the
data fail to support either of the two models? In some cases
investigators find that their data do not conform to either of these
disease progress models. When this happens it is desirable to use a
single mathematical function that will depict the full range of
shapes taken on by disease progress curves. Because of its simplicity
and flexibility of application, the Weibull probability density
function (pdf) and cumulative distribution is such a disease progress
model (8,12). Examples of disease progress curves fitted with the
Weibull function for both simulated and real data are presented.

MATHEMATICS OF THE MODEL
The Weibull pdf may be expressed in the form:

dy/dt = T':(t_Ta) exp {~[(t-a)/bT}

in which: y =disease proportion; = time (relative units); e = base of
the natural log system, and r>a, >0, ¢>0.
The pdf provides an absolute rate, dy/dt, of disease increase and
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the parameters (a, b, and c¢) of the density function vary with the
characteristics of the epidemic under investigation. In this function,
a is the location parameter which represents the earliest possible
occurrence of disease, b is the scale parameter which is inversely
related to the rate of disease increase, and ¢ is the shape parameter
which characterizes the manner in which disease progressed and
may be used to select the Vanderplank model to which the data
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Fig. 1. Disease progression data generated by using the simple interest
disease (SID) model with an r value of 0.1 and y, equal to 0.01. Estimated
Weibull parameters were: a = 1.9, b = 10.0, ¢ = 1.0. Error sums of squares
equaled 4.6 X 10, A) Disease proportion (y); B) probability density
function (dy/ dt).
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Fig. 2. Disease progression data generated by using the compound interest disease (CID) model with an r value of 0.1 and yo equal to 0.01. Estimated Weibull
parameters were: a = —6.8, b=60.7, ¢ = 3.6. Error sums of squares equaled 5.0 X 10~, A) Disease proportion (y); B) probability density function (dy/dt).

more nearly conform.
The Weibull cumulative distribution function is derived by
integrating the pdf and is presented in the following expression:

y=1—exp {—[(t—a)/b]’}

Because the distribution includes the two-parameter exponential
as a special case (¢ = 1.0), the Weibull model can be thought of asa
generalization of the exponential. Therefore, the Weibull function
may be of value to those who have been using the exponential
distribution but feel the need for a more flexible model.

A FORTRAN computer program was written to estimate the
Weibull parameters. A maximum likelihood technique was used to
derive initial estimates of b and ¢. These estimates were refined, and
a also was estimated with a scale-invariant, iterative, least squares
procedure within the program.

Disease progression data were generated for the SID and CID
models by a FORTRAN program. The SID model is:

mn

y=1—(l-yo) e~
which is derived by integrating:
dy/dt = r(1-y)

The variables ¢ and y are defined as before; yo equals the initial
amount of disease and r is the rate parameter. In Vanderplank’s
terminology, r is replaced by Q Rand is called the absolute infection
rate (11). The CID model equation is:

_ 1
Y™ T+exp {Fnlyo/ (1=yo)]+rt}

which is one formulation derived by integrating:
dy/dt=ry(l —y)

All variables are defined as before. The rate parameter (r) of the

CID model was termed the apparent infection rate by Vanderplank
(11). The r values used in the simulations ranged from 0.05 to 0.70.
0.70.

APPLICATION OF THE MODEL

Data generated by Vanderplank’s (11) equation for SID having
an r value of 0.1 are described well with values predicted by the
Weibull model (Fig. 1-A). The predicted cumulative values fall on
the generated values, and for SID the resulting shape parameter(c)
equaled 1.0. The corresponding pdf exhibited the expected
exponential, and there was close agreement between the generated
and the predicted values (Fig. 1-B).

Data generated from Vanderplank’s (11) CID model having an
r value of 0.1 yielded the typical S-shaped curve (Fig. 2-A). The
data fitted according to the Weibull model closely approximated the
generated values; for CID the shape parameter was equal to 3.6.
The pdf (Fig. 2-B) for CID was symmetrical and approximated a
normal distribution.

In comparing the estimated Weibull parameters for increasing r
values (Table 1), several characteristic results should be noted. First,

TABLE 1. Estimated Weibull parameters for simple interest (SID) and
compound interest (CID) type diseases increasing at selected values of the
rate parameter r

SID CID
r a b ¢’ a b’ ¢
0.05 1.9 20.0 1.0 -14.0 117.9 3.6
0.1 1.9 10.0 1.0 —6.8 60.7 3.6
0.3 2.0 33 1.0 -=1.0 20.2 36
0.5 2.0 2.0 1.0 0.2 12.2 3.6
0.7 20 1.4 1.0 0.7 8.7 3.6

*Weibull location parameter.
*Weibull scale parameter.
“Weibull shape parameter.
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for rates less than 0.7, shape parameters for CID and SID are 3.6
and 1.0, respectively. Second, the shape paramter, ¢, isindependent
of the location and scale parameters (aand b, respectively). Third,
when ¢ equals 1.0, r equals 1/b.

An example of the unimodal, continuous shapes which may be
depicted by the Weibull pdfis illustrated in Fig. 3. When the shape
parameter, ¢, is less than 3.6, the function is skewed to the right;
when ¢ = 3.6, the pdfis symmetrical; when ¢ is greater than 3.6 (asin
epidemics in which diseased individuals contribute toward new
disease to a greater extent than that approximated by the CID
relationship) the pdf is negatively skewed. Ray blight of
chrysanthemum (Chrysanthemum morifolium[Ramat.] Hemsl.),
which is caused by Mycosphaerella ligulicola Baker, Dimock, and
Davis, is an example of a disease of this third type. The Weibull
function was fitted to disease progression data generated by the
computer simulator MYCOS (7), and the estimate of the shape
parameter was equal to 9.2 (Fig. 4-A). For this value of ¢, the pdf
was skewed to the left (Fig. 4-B).

Investigators that choose to model data by using one of
Vanderplank’s transformations can utilize the Weibull pdf to
determine whether the proper model was selected. For Bald’s (2)
data for spotted wilt of tomato, Vanderplank (11) suggested the
SID model because the “spotted wilt virus was entering fields
from without™ and plant-to-plant spread within the tomato fields
could not be detected. Therefore, he classified the disease
as SID and used the transformation, In[l/(1—y)]. Our analysis of
the data revealed an estimated shape parameter of 3.4. This in-
dicated that the data were nearly normally (not exponentially)
distributed as expected from biological evidence. The data do
not support the original assumption of simple interest increase.
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Fig. 3. Unimodal continuous shapes of the Weibull probability density
function for various values of a, b, and .
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The disease actually was increasing more like a CID than a SID,
Its effect on an estimated r value is readily apparent if the disease
increase between times 24 and 31 is considered. For the SID
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Fig. 4. Disease progression data generated by the computer simulator
MYCOS (7). Estimated Weibull parameters were: a = —6.7, b =50.8, ¢ =
9.2. Error sums of squares equaled 1.2 X 10, A) Disease proportion (y); B)
probability density function (dy/dt).



model, r equaled 0.051/day; for the CID model, r equaled
0.138/day. This was a difference of approximately 170% in the
estimate of r.

DISCUSSION

The Weibull function appears to be a very useful disease progress
model: it enables analysis of almost all shapes of disease progress
curves, and in the Vanderplank type of analysis, the Weibull
parameters can be used to identify the type of disease progress
model which most nearly approximates the observed data. It also
allows calculation of a rate function at any time, ¢ (by the first
derivative of the Weibull distribution [equation 1]) and associated
values that provide additional information on the disease
progression, namely, parameters that describe location, scale, and
shape. An interesting property is that the sum of the location and
scale parameters for a given data set is the 63rd percentile of the
Weibull distribution, ie, the time, ¢, at which 639 of the plants are
infected or when 63% of the surface area is covered by lesions.

“Simple interest” and “compound interest” disease progress
models, although the most popular, are only two of several models
proposed to describe disease progress curves. Several workers
(1,3,5) have used more flexible growth models to analyze
epidemics (eg, Richard’s function). Fitting data points to these
growth models is a nontrivial matter and most techniques are
unreliable when final disease level (asymptote) is not known, data
sets are small, and estimated parameters are highly correlated ([6]
and Knoble and Madden, unpublished). These limitations are less
severe in estimating the Weibull parameters.

The Weibull cumulative distribution and pdf have been used
extensively in life-testing and time-to-failure investigations
(9,10,12). The many statistical investigations and developments of
the Weibull model have led to its use, not only as a model in the
sense of curve fitting, but also to its application to censored data for

the prediction of expected future occurrences with associated
confidence intervals (4)—a most desirable feature in epidemiolog-
ical studies.
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