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ABSTRACT

FLEMING, R. A., and C. 0. PERSON. 1978. Disease control through use of multilines: a theoretical contribution. Phytopathology
68: 1230-1233.

A mathematical model of a multiline is used to illustrate population. It is also shown that the relative merits of
the relationships between the composition of the host crop, multiline and monoculture strategies of employing resistance
the readiness of the plant breeder to change crop genes depend on the circumstances. Important
composition, the yield losses, and the composition of the considerations are stabilizing selection and the readiness of
pathogen population. Under the assumptions of the model it the plant breeder to change crop composition. Practical
is shown that an infrequently adjusted multiline is incapable aspects of multiline implementation are discussed.
of preventing one genotype from dominating the pathogen

Additional key words: plant breeding, disease resistance, gene strength, virulence, complex races, gene-for-gene
relationship, epidemic.

When a multiline is grown widely, pathogens with and in combination in a series of agronomically identical
multiple virulence (i.e., "complex races" capable of varieties; (ii) that all host:pathogen interactions are based
inciting disease on two or more components of the on gene-for-gene relationships (1); (iii) that each of the n
multiline) may be favored by natural selection (7). pathogen genotypes that could be differentiated by
However, with each component of the multiline carrying phenotype on the n host resistance genotypes is originally
only a single resistance gene (R-gene), actually only a present in the pathogen population; (iv) that stabilizing
single virulence gene (v-gene) is required in any particular selection is operating as expected by experiment (4, 5, 8)
interaction that results in disease; the one or more and theory (6, 7, 8); (v) that competitive or synergistic
additional v-genes that are carried by complex races are, interactions between different units of inoculum on a
in fact, unneeded in particular interactions with common host plant are negligible; and (vi) that removals
individual plants of the multiline. Assuming that are negligible [as they would be during the early stages of
stabilizing selection (8) operates against unneeded v- an epidemic (8)].
genes, and that every addition of an unneeded v-gene is Mathematical model of a multiline.-Now let mj be the
accompanied by a fitness loss, an endpoint should be proportion of the multiline that is of component j, let Q1
reached at which the accumulation by the complex race of (t) be the amount of pathogen genotype i present at time t,
yet another v-gene is no longer advantageous (7). It has and let Ri, j be the rate of increase of inoculum of pathogen
been shown mathematically (3) that this endpoint will be genotype i on host genotype j.
determined independently of the number of R-gene Then, assuming the mj's and Ri, j's are constant
components in the multiline. Furthermore, by enlarging
the multiline to include more components, the Q (t) = Q (t-1) e', (Eq. I)
development of complex races will proceed at a slower n

rate and the proportion of the multiline that can be where ri = I mjRi, j. (Eq. II)
diseased by any complex race able to maintain itself at a j=l
significant quantity will be made smaller (3).

In this communication we hope to carry the The frequency of pathogen genotype i at time t is
mathematical development of multiline theory a step n
further by considering the relationships between the fi (t) Qi (t-l) e" / Qi (t-l) en
choice of crop composition, the readiness of the plant
breeder to change crop composition, the yield losses, and
the composition of the pathogen population. We assume: =f (t-n) er ftl(t1= e/Y fi (t-1) er'
(i) that a breeder is able to produce n different genotypes '=
of host resistance by using the available R-genes singly

Assuming that any differential selection acting on the

00032-949X/78/000 220$03.00/0 parasite outside the disease season is negligible, the
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reduced. Thus, if time is measured only during the disease disease, Z, present throughout the season.
season, tf

n
fi (t) = fi (0) ert / fi (0) ert Z f x(t) dt,

i= 1 t=o
fi (t) _ (0)- (ri - ri) t where tf denotes the length of the disease season.

and -e (Eq. 11) Using Eq. IV an upper bound can be placed on Z:
f(t) 0t

Zmax • /' x(0) erk dt,
Application of the model.-In the real world, pathogen t=0

reproductivity is likely to be greatly influenced by weather tO

and other environmental factors, While these influences and therefore
would introduce a certain amount of "noise" (i.e.,
unpredictable fluctuations in both the size and genotypic Zm__ < (erktf
content of the parasite population), the processes x (0) rk
represented by Eq. III would be expected to persist over
the long term.

Equation III makes it clear that if pathogen genotype i This equation is plotted in Fig. 2.
is reproducing more quickly than genotype j (i.e., ri > rj), An objective of the plant breeder is to minimize Z and
then the ratio of their frequencies increases exponentially thus to maximize yield and ultimately revenue while
with time. Therefore the frequency of that genotype keeping costs low. He would work toward this objective
which reproduces most rapidly will approach 1.0 as t by determining that set of mj's for which Z is minimal.
becomes large. Hence, in analogy with Eq. I, the size of The response time, T, the practical minimum to the
the pathogen population at time t, x (t), when t is large, length of time, in pathogen generations, between
can be written adjustments of crop composition, provides a measure of

x (t) - x (t-!) erk, Eq. IV
Z max/X(o)

where parasite genotype k is that one which reproduces 20

more quickly than any other on the particular host
population described by the set of mj's. The relative rate of
increase in size of the pathogen population (1 / x)'(dx/ dt)
is plotted against time in Fig. 1.

Van der Plank (8) has indicated that yield losses in a ,against tf

season are roughly proportional to the total amount of------- against r k
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Fig. 1. Plots against time of the relative rate of increase in size do

of the pathogen population, (I/x), (dx/dt) (solid line); and the
proportion of the pathogen population composed of that
genotype, call it k, which reproduces more quickly than any
other, fk (t) (broken line), on the particular host population
described by the set of mj's. The degree to which the pathogen 0 1 2 3
population has adapted to the host population is indicated by fk tf or rk
(t). Initially the rate of increase of fk (t) is limited by the scarcity of Fig. 2. Plot of the ratio of the upper bound on disease quantity
genotype k. When fk (t) approaches 1.0 its rate of increase again is present throughout the season, Zmax, to the initial amount, x (0),
limited, but now because the excess in fitness of pathogen against the duration of the disease season in pathogen
genotype k over the population average is very small. The generations, tf, when the maximum rate of increase in disease
relative rate of increase in size of the pathogen population, (1 / x). quantity per pathogen generation, rk, is 1.0 (solid line); and rk, for
(dx/dt), increases at a decelerating rate as the pathogen tf = 1.0 (broken line). Zmax/x (0) increases more quickly with tf
population becomes adapted to the host population. than with rk.



1232 PHYTOPATHOLOGY [Vol. 68

the readiness of the plant breeder to alter the mj's. Clearly quickly on host genotype i than on any other host
T depends upon a number of factors such as the genotype; i.e.,
cost/ benefit ratio, the accessibility of sufficient quantities
of the various host R-genotypes in agronomically similar Ri,i > Rij, i + j. (Eq. VI)
varieties, and the ease with which adjustments can be
made to the mj's. These factors, in turn, are influenced by In this case the plant breeder can determine which
crop acreage and value, by availability of resistance pathogen genotype will eventually prevail but he is still
sources and genetic information, by the nature of the crop unable to prevent domination of the pathogen population
(e.g., whether inbreeding or outcrossing, annual or by one genotype. His objective is essentially to find that
perennial), and by other factors that may determine how set of mj's and that pathogen genotype k, for which rk is
quickly the results of plant breeding are realized, minimal (Fig. 1).

We may imagine that at one extreme T is very short; at Based on II and V, the best choice of host for a
the other it is enormous. Where T is short the plant monoculture is that genotype h for which Rjj is minimized
breeder will have the option of reacting to even slight over all host genotypes j; i.e.,
shifts in the pathogen population; he will attempt to min
minimize a of Fig. 1 by readusting the mj's as often as is Rh,h = j Rjj.
practicable. This would amount to the repeated
imposition of intensely disruptive selection on the The right hand side of this equation represents the
pathogen population. It is obvious that a strategy such as minimum, for all possible values of j, of R
this would depend on accurate genetic data of the kind Now consider a multiline which has mh = 1- S and mi =

,provided by a sensitive monitoring program. With S where S is small enough that genotype h continues to

continual adjustment of mj's it is unlikely that any dominate the pathogen population. Then, by II and VI

particular genotype ever will dominate the pathogen
population. Thus, at this extreme [where we assume rh = (I- 5) Rhh +SRhi< R

response times are negligible, and where a depends
critically on the Q' (0)'s], no general statement can be Hence, given stabilizing selection, a multiline can always
made concerning the relative merits of monocultures and be formed for which its asymptotic value of (I / x)" (dx/ dt)
multilines. Either could be preferred according to the is less than that of the best monoculture.
circumstances. Predictions of the model.-The following conclusions

Where stabilizing selection does not operate the most can be drawn from the above:
complex genotype i would quickly dominate and the (i) In the presence of stabilizing selection the readiness
plant breeding strategy would be one of determining the with which the composition of the host crop can be
host genotypej which minimizes Ri. Host genotypej then altered is a key factor in determining the best
would be grown in monoculture, pending further changes strategy of employing resistance genes.
in the system.

At the other extreme, where we imagine that the (ii) If the response time is relatively short the crop
response time is very long, an introduced crop with a composition (whether monoculture or multiline)
particular set of mj's must be left unchanged for a large frequently can be adjusted in response to the
number of pathogen generations. The pathogen changing constitution of the pathogen population.
population will have ample time to adapt to crop Both the size and make-up of the pathogen
composition and will become dominated by a single population are under the control of the plant
genotype. The plant breeder therefore should be breeder. Multiline and monoculture techniques may
attempting to minimize rk of Fig. 1 when he alters the mj's. prove to be useful under different circumstances.

Without stabilizing selection, only a static monoculture
is needed (as above), and the response time is no longer a (iii) If the response time is sufficiently long and
relevant factor. However, if stabilizing selection is adjustments to crop composition sufficiently
operating, then for each host genotype j there is a infrequent to enable the pathogen to become highly
particular pathogen genotype, call it j for convenience, adapted, the multiline cannot prevent one genotype
which reproduces more quickly than any other pathogen from dominating the pathogen population.
genotype on that particular host genotype. In other words However, in these circumstances, use of multilinescan minimize the size of the pathogen population

Rj,j > Rij, i * j. (Eq. V) and, accordingly, will be preferable to monoculture.

(iv) The greater the frequency of rearrangement (made
Pathogen genotype j is that genotype which has a v-gene to the crop in response to changes in the pathogen
corresponding to each R-gene carried by host genotype j population) the lower the yield losses will be. It
and no unneeded v-genes which reduce fitness (8). Thus, if should be emphasized, however, that in reality the
pathogen genotype i carries all the v-genes in genotype j costs of monitoring, and the time and expense
plus one extra, then a measure of the strength (8) of the R- required in making adjustments, will generally limit
gene corresponding to this extra v-gene in terms of the frequency with which adjustments can be made.
stabilizing selection is Rjj - Rij. The larger this quantity, Thus, even under the best of conditions it is unlikely
the stronger the stabilizing selection operating against the that the plant breeder will be able to operate in the
v-gene in the absence of its corresponding R-gene, and the vicinity of a in Fig. 1.
stronger the R-gene in this particular genetic background.

Similarly, pathogen genotype i reproduces more Multiline implementation.--In nature, it will be
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impossible to predict accurately the effect of a multiline incorporation of new R-genes (as they become available)
on the genotypic content of a pathogen population until also will improve the performance of the multiline.
the multiline has been in use for some time (2).
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