Link to home

Distribution of Phytophthora spp. in Field Soils Determined by Immunoassay

January 1997 , Volume 87 , Number  1
Pages  101 - 107

S. A. Miller , L. V. Madden , and A. F. Schmitthenner

Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster 44691

Go to article:
Accepted for publication 10 October 1996.

Populations of Phytophthora spp. were determined by enzyme-linked immunosorbent assay (ELISA) in field soils used for pepper and soybean production in Ohio. Soybean fields were sampled extensively (64 fields, n = 6 samples per field over 2 years) and intensively (4 fields, n = 64 samples per field in 1 year) to assess heterogeneity of P. sojae populations. Four pepper fields (n = 64), three of which had a history of Phytophthora blight (caused by P. capsici), also were sampled intensively during a 6-month period. Mean (m), variance (v), and measures of aggregation (e.g., variance-to-mean ratio [v/m]) of immunoassay values, translated to Phytophthora antigen units (PAU), were related to the disease history in each of the pepper and soybean fields. Mean PAU values for fields in which Phytophthora root rot (soybean) or blight (pepper) had been moderate to severe were higher than in fields in which disease incidence had been low or not observed. A detection threshold value of 11.3 PAU was calculated with values for 64 samples from one pepper field, all of which tested negative for Phytophthora by bioassay and ELISA. Seven of the eight intensively sampled fields contained at least some detectable Phytophthora propagules, with the percentage of positive samples ranging from 1.6 to 73.4. Mean PAU values ranged from 1 to 84 (extensive soybean field sampling), 6 to 24 (intensive soybean field sampling), and 4 to 30 (intensive pepper field sampling); however, variances ranged from 0 to 7,774 (extensive sampling), 30 to 848 (intensive soybean field sampling), and 5 to 2,401 (intensive pepper field sampling). Heterogeneity of PAU was high in most individual soybean and pepper fields, with values of v/m greater than 1, and log(v) increasing with log(m), with a slope of about 2.0. Spatial autocorrelation coefficients were not significant, indicating there was no relationship of PAU values in neighboring sampling units (i.e., field locations) of the intensively sampled fields. Combined results for autocorrelations and v/m values indicate that Phytophthora was highly aggregated in these fields but that the scale of the aggregation (e.g., average focus size) was less than the size of the sampling units. Because of the observed variability, we calculated that sample sizes of 20 or more would be needed to estimate precisely the mean density of Phytophthora in most cases.

Additional keywords: epidemiology, spatial patterns.

© 1997 The American Phytopathological Society