Homology of *Rhizobium meliloti* NodC to Polysaccharide Polymerizing Enzymes

E. M. Atkinson and S. R. Long

Department of Biological Sciences, Stanford University, Stanford, CA 94305-5020 U.S.A.
Received 8 June 1992. Accepted 29 June 1992.

Rhizobium bacteria form nitrogen-fixing nodules on legume roots. As part of the nodulation process, they secrete Nod factors that are β-1,4-linked oligomers of N-acetylglucosamine. These factors depend on nodulation (nod) genes, but most aspects of factor synthesis are not yet known. We show here that one gene, nodC, shows striking similarity to genes encoding proteins known to be involved in polysaccharide synthesis in yeast and bacteria, specifically chitin and cellulose synthases, as well as a protein with unknown function in *Xenopus* embryos, DG42. This similarity is consistent with a role for the NodC protein in the formation of the β-1,4-linkage in Nod factors.

The formation of symbiotic root nodules on legumes by *Rhizobium* bacteria requires the action of *Rhizobium* nodulation (nod) genes (reviewed in Long 1989). It is now known that extracellular bacterial signal molecules are important for this symbiosis, and production of these factors depends on the presence and expression of the nod genes in the bacterium (Faucher *et al.* 1988, Van Brussel *et al.* 1986). The Nod factors are modified oligosaccharides of β-1,4-linked N-acetylglucosamine and are thus similar to chitin oligomers (Lerouge *et al.* 1990). The modifications include an N-acyl substitution and sometimes a C-6 acetyl on the nonreducing sugar residue, and a C-6 sulfate on the reducing end (Lerouge *et al.* 1990; Schultz *et al.* 1991; Spank *et al.* 1991; E. M. Atkinson, K. Faull, and S. R. Long, unpublished observations).

The sequences of numerous nod genes are known. In some cases, sequence homology has suggested function, and in others direct biochemical assay has demonstrated function. The genes studied so far include those for fatty acid modification, addition of the sulfate and acetyl groups, as well as the synthesis of glucosamine (Baev *et al.* 1991; Roche *et al.* 1991; Schwedock and Long 1990; Spank *et al.* 1991). However, there is currently no biochemical evidence on the nature of the Nod factor β-1,4-glucan polymerizing activity.

We have found that the *Rhizobium* NodC protein has striking homology to other proteins known to be involved in polysaccharide synthesis in yeast and bacteria, specifically chitin and cellulose synthases, as well as a protein with unknown function in *Xenopus* embryos, DG42 (Sargent and Dawid 1983). Some of these homologies have been reported earlier (Bulawa 1992). The sequence similarity suggests to us that NodC could be the synthetic enzyme catalyzing the β-1,4-linkage in Nod factor production. If a catalytic domain is the basis for the similarity of these proteins, then the presence of this domain in DG42 would be consistent with a role in the synthesis of matrix polysaccharides such as hyaluronic acid. These observations of sequence similarity provide specific hypotheses that can be tested biochemically.

We performed sequence alignments on the translation products of the nodC gene from *R. meliloti*, pDG42 from *Xenopus laevis* (Rosa *et al.* 1988), the cellulose synthase gene from *Acetobacter xylinum* (Saxena *et al.* 1990), and the CSD2/CAL1 gene (Valdivieso *et al.* 1991; Bulawa 1992) and the CHS2 gene (Silverman 1989) from *Saccharomyces cerevisiae*. The alignments were done with the University of Wisconsin Genetics Computer Group software, specifically FASTA and BESTFIT (Devereux *et al.* 1984). Multiple sequence alignments were performed by the TULLA program (Subbiah and Harrison 1989). Final alignments were made by a combination of BESTFIT analysis and by hand alignment.

We observed substantial similarity of nodC to each of these genes. NodC shows the best match with the DG42 protein of *X. laevis*, with which it displays 26.4% overall identity and 48.8% overall similarity. Ranked in order of decreasing nodC homology are DG42, cellulose synthase, CSD2/CAL1, and CHS2. DG42 and cellulose synthase show extended homology to the amino terminus of NodC. In addition there are four other regions in which all five sequences are well conserved (see Fig. 1). At amino acids 141–143 of NodC there is an acidic region partly conserved in other proteins, while beginning at residue 204 there is a sequence that contains the unusual cysteine cluster that our group and others have previously noted in NodC (Jacobs *et al.* 1985; Long 1991); CHS2 does not have this cluster but other proteins in the family show it. In addition there is another region with some acidic character at amino acids 238–245, and finally a well conserved region at residues 273–283.

NodC was originally identified based on the requirement for the nodABC operon in nodulation of alfalfa by *R. meliloti* (Debelle *et al.* 1986; Jacobs *et al.* 1985, Kondorosi
et al. 1984). *R. meliloti* nodC mutants exhibit a Nod[−] phenotype on alfalfa. NodC has been identified in all *Rhizobium* species studied to date, and NodC proteins can functionally complement nodC mutations in other *Rhizobium* species. It is now known that the nodABC operon is essential in the production of the modified oligosaccharides known as Nod factors (Lerouge et al. 1990; Spaing et al. 1991; Schultz et al. 1991; E. M. Atkinson, K. Faulk, and S. R. Long, unpublished observations). All of these molecules are β-1,4-linked N-acetylglucosamine. We show here that NodC is similar to several enzymes involved in the synthesis of β-1,4-poly saccharides. The sequence similarity with chitin synthase could be consistent either with NodC being a synthase, or with its simply having a binding domain for UDP-N-acetylglucosamine, a probable common precursor for chitin and Nod-factor synthesis. However, the fact that NodC is also homologous to a β-1,4 synthase for at least one other polymer, cellulose, supports the possibility that the protein conservation relates to the synthesis of that particular linkage, rather than for the use of N-acetylglucosamine in particular. This would be consistent with a role for NodC in polymerization of the Nod factor backbone.

Chitin is a polymer of β-1,4-linked N-acetylglucosamine and, because chitin synthase from yeast has been extensively studied, there are detailed biochemical and genetic data concerning this enzyme. There appear to be at least three chitin synthetic activities in *Saccharomyces* that have been localized genetically: CHS1, CHS2, and CSD2 (also called CAL1) (Valdivieso et al. 1991; Bulawa 1992). We previously observed slight homology between CHS2 and NodC (Long 1991), but the identification of CSD2/CAL1 led to the examination of these sequences as a group, which revealed the similarities shown in Figure 1.

Cellulose is a polymer of β-1,4-linked glucose, and cellulose synthase from *A. xylinum* has recently been cloned by two independent groups (Saxena et al. 1990; Wong et al. 1990). The bcsA gene of the cellulose synthase operon matches the cellulose synthase reported by Saxena et al. (1990), and it is this protein that has similarities to NodC,

![Multiple sequence alignment of NodC from Rhizobium meliloti, DG42 from Xenopus laevis, cellulose synthase from Acetobacter xylinum (Bc), and two yeast chitin synthases, CSD2/Cal and CSH2. The DG42 and cellulose synthase proteins have homology to NodC beginning at amino acid 46 of NodC and extending to amino acid 121. DG42 has a 50 amino acid insert at this point, and then all five peptides show homology from NodC 128 to 291.](image-url)
CHS2, and CSD2/CAL1. Saxena et al. believe this to be the catalytic subunit for cellulose production, based on N-terminal sequencing of synthase purified by product entrapment. Other groups (Mayer et al. 1991; Wong et al. 1990) have identified the bcsB gene of this operon as the catalytic subunit of the synthase. There has been no firm resolution of this discrepancy.

Of all of the sequences examined so far, X. laevis DG42 best matches the NodC sequence. The DG42 gene was cloned as a cDNA expressed during Xenopus gastrulation (Sargent and Dawid 1983). According to immunolocalization, DG42 accumulates to a peak at the mid-gastrula stage, and decays by the end of neurulation (Rosa et al. 1988). At one point during embryogenesis, DG42 makes up about 0.2% of the total poly(A)^+ mRNA in the embryo. Bulawa (1992) has proposed that the homology of DG42 to NodC suggests involvement of lipo-oligosaccharides as signals in early vertebrate embryo development. However, we also note that high concentrations of polysaccharides such as hyaluronate are often associated with epithelium-to-mesenchyme transitions, as occurs during gastrulation (Toole et al. 1984). Because the homologies of this small family of apparent synthetic enzymes include chitin and cellulose synthases, which produce matrix-type substances, we speculate that the DG42 protein may simply be involved in synthesis of matrix polysaccharides in the developing embryo. This would be consistent with both the homology and localization data.

The homologies presented are intriguing. Each of these proteins is probably a membrane protein, as evidenced by the extended hydrophobic domains C-terminal to the regions of homology. We have previously noted that NodC has four putative transmembrane domains (Jacobs et al. 1985). The known requirements for polysaccharide synthesis indicate that a nucleotide-sugar binding domain should be present, and it will be informative to discover if the proteins described here will bind nucleotide sugars. Also, the cluster of conserved cysteines suggests a common domain such as a metal-binding domain, since it has been found that cellulose and chitin synthases require divalent cations for their activity (Cabib et al. 1983; Wong et al. 1990).

There has been one previous proposal for NodC function: John et al. (1985, 1988) reported that NodC is in the outer membrane of Rhizobium and suggested that its location and inferred topology indicate that it functions as a signal receptor. Based on the homology data presented here, we propose, by contrast, that NodC functions in the synthesis of nod factors. This may occur in a vectorial fashion through the membrane, as has been shown for some chitin synthases (Cabib et al. 1983), or may be cytoplasmic, with factor export occurring independently. NodC may also interact with other nod gene products such as NodA (Johnson et al. 1989).

Our results suggest that NodC and the other proteins belong to an extended family of β-1,4 polysaccharide synthases from a range of organisms from bacteria to vertebrates. The function of some of the proteins is well known, as in the case of chitin synthase (CHS) in yeast, while some functions can be inferred by genetic analysis, as in the case of R. meliloti NodC. While the Xenopus DG42 protein has no demonstrated function at this time, the homology now suggests possible tests for function. This proposed family will be likely to gain new members as more genes are discovered in systems that involve polysaccharide synthesis.

ACKNOWLEDGMENTS

This work was supported by DOE contract AS03-82-ER-12084 to S. R. L., and E. M. A. was supported by a Training Grant in Cell and Molecular Biology from the National Institutes of Health to Stanford University. We thank members of our group for useful discussions and computer assistance, and express our thanks as well to J. Dénarié, C. Bulawa, and I. Dawid for discussions and/or communications prior to publication.

LITERATURE CITED

