Link to home

Production of Xylella fastidiosa Diffusible Signal Factor in Transgenic Grape Causes Pathogen Confusion and Reduction in Severity of Pierce's Disease

March 2014 , Volume 27 , Number  3
Pages  244 - 254

Steven Lindow,1 Karyn Newman,1 Subhadeep Chatterjee,1 Clelia Baccari,1 Anthony T. Iavarone,2 and Michael Ionescu1

1Department of Plant and Microbial Biology, and 2QB3 Institute, University of California, Berkeley 97420, U.S.A.


Go to article:
Accepted 20 September 2013.

The rpfF gene from Xylella fastidiosa, encoding the synthase for diffusible signal factor (DSF), was expressed in ‘Freedom’ grape to reduce the pathogen's growth and mobility within the plant. Symptoms in such plants were restricted to near the point of inoculation and incidence of disease was two- to fivefold lower than in the parental line. Both the longitudinal and lateral movement of X. fastidiosa in the xylem was also much lower. DSF was detected in both leaves and xylem sap of RpfF-expressing plants using biological sensors, and both 2-Z-tetradecenoic acid, previously identified as a component of X. fastidiosa DSF, and cis-11-methyl-2-dodecenoic acid were detected in xylem sap using electrospray ionization mass spectrometry. A higher proportion of X. fastidiosa cells adhered to xylem vessels of the RpfF-expressing line than parental ‘Freedom’ plants, reflecting a higher adhesiveness of the pathogen in the presence of DSF. Disease incidence in RpfF-expressing plants in field trials in which plants were either mechanically inoculated with X. fastidiosa or subjected to natural inoculation by sharpshooter vectors was two- to fourfold lower in than that of the parental line. The number of symptomatic leaves on infected shoots was reduced proportionally more than the incidence of infection, reflecting a decreased ability of X. fastidiosa to move within DSF-producing plants.



© 2014 The American Phytopathological Society