Link to home

Arabinogalactan Proteins Occur in the Free-Living Cyanobacterium Genus Nostoc and in Plant–Nostoc Symbioses

October 2012 , Volume 25 , Number  10
Pages  1,338 - 1,349

Owen Jackson, Oliver Taylor, David G. Adams, and J. Paul Knox

Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.

Go to article:
Accepted 31 May 2012.

Arabinogalactan proteins (AGP) are a diverse family of proteoglycans associated with the cell surfaces of plants. AGP have been implicated in a wide variety of plant cell processes, including signaling in symbioses. This study investigates the existence of putative AGP in free-living cyanobacterial cultures of the nitrogen-fixing, filamentous cyanobacteria Nostoc punctiforme and Nostoc sp. strain LBG1 and at the symbiotic interface in the symbioses between Nostoc spp. and two host plants, the angiosperm Gunnera manicata (in which the cyanobacterium is intracellular) and the liverwort Blasia pusilla (in which the cyanobacterium is extracellular). Enzyme-linked immunosorbent assay, immunoblotting, and immunofluorescence analyses demonstrated that three AGP glycan epitopes (recognized by monoclonal antibodies LM14, MAC207, and LM2) are present in free-living Nostoc cyanobacterial species. The same three AGP glycan epitopes are present at the Gunnera–Nostoc symbiotic interface and the LM2 epitope is detected during the establishment of the Blasia–Nostoc symbiosis. Bioinformatic analysis of the N. punctiforme genome identified five putative AGP core proteins that are representative of AGP classes found in plants. These results suggest a possible involvement of AGP in cyanobacterial–plant symbioses and are also suggestive of a cyanobacterial origin of AGP.

© 2012 The American Phytopathological Society