Link to home

Pseudomonas syringae pv. phaseolicola Mutants Compromised for Type III Secretion System Gene Induction

August 2009 , Volume 22 , Number  8
Pages  964 - 976

Xin Deng,1 Yanmei Xiao,1 Lefu Lan,1 Jian-Min Zhou,2 and Xiaoyan Tang1

1Department of Plant Pathology, Kansas State University, Manhattan, KS 66506-5502; 2National Institute of Biological Science, Beijing, China

Go to article:
Accepted 12 April 2009.

Pseudomonas syringae bacteria utilize the type III secretion system (T3SS) to deliver effector proteins into host cells. The T3SS and T3 effector genes (together called the T3 genes hereafter) are repressed in nutrient-rich medium but rapidly induced after the bacteria are transferred into minimal medium or infiltrated into plants. The induction of the T3 genes is mediated by HrpL, an alternative sigma factor that recognizes the conserved hrp box motif in the T3 gene promoters. The induction of hrpL is mediated by HrpR and HrpS, two homologous proteins that bind the hrpL promoter. To identify additional genes involved in regulation of the T3 genes, we screened for the P. syringae pv. phaseolicola NPS3121 transposon-tagged mutants with reduced induction of avrPto-luc and hrpL-luc, reporter genes for promoters of effector gene avrPto and hrpL, respectively. Determination of the transposon-insertion sites revealed genes with putative functions in signal transduction and transcriptional regulation, protein synthesis, and basic metabolism. A transcriptional regulator (AefRNPS3121) was identified in our screen that is homologous to AefR of P. syringae pv. syringae strain B728a, a regulator of the quorum-sensing signal and epiphytic traits, but was not known to regulate the T3 genes. AefRNPS3121 in P. syringae pv. phaseolicola NPS3121 and AefR in P. syringae pv. syringae B728a behave similarly in regulating the quorum-sensing signal in liquid medium but differ in regulating the epiphytic traits, including swarming motility, leaf entry, and epiphytic survival.

© 2009 The American Phytopathological Society