August
2009
, Volume
22
, Number
8
Pages
942
-
952
Authors
Ching-Hsuan Lin,
Siwy Ling Yang, and
Kuang-Ren Chung
Affiliations
Citrus Research and Education Center, and Department of Plant Pathology, Institute of Food and Agricultural Sciences (IFAS), University of Florida, 700 Experiment Station Rd., Lake Alfred 33850, U.S.A.
Go to article:
RelatedArticle
Accepted 23 April 2009.
Abstract
Citrus brown spot disease is caused by the necrotrophic fungus Alternaria alternata. Its pathogenic capability has been thought to depend exclusively on the production of host-selective ACT toxin. However, circumvention of plant defenses is also likely to be important for the disease process. To investigate the fungal response to host-generated reactive oxygen species (ROS), we cloned and characterized the AaAP1 gene of A. alternata, which encodes a polypeptide resembling yeast YAP1-like transcriptional activators implicated in cellular responses to stress. Expression of the AaAP1 gene in a wild-type strain was primarily induced by H2O2 or ROS-generating oxidants. Using a loss-of-function mutation in the AaAP1 gene, we demonstrated an essential requirement for oxidative tolerance during the host invasion step. Mutants lacking AaAP1 showed increased sensitivity to H2O2 and loss of fungal pathogenicity. The ΔAaAP1 null mutant did not cause any visible necrotic lesions on wounded or unwounded leaves of citrus cv. Minneola. Compared with the wild type, the null mutant displayed lower catalase, peroxidase, and superoxide dismutase activities. All mutant phenotypes were restored to the wild type in fungal strains expressing a functional copy of AaAP1. Upon exposure to H2O2, the AaAP1::sGFP (synthetic green fluorescent protein) fusion protein became localized in the nucleus. Inoculation of the mutant with NADPH oxidase inhibitors partially restored fungal pathogenicity. Our results highlight the global regulatory role of a YAP1 homolog in response to oxidative stress in A. alternata and provide insights into the critical role of ROS detoxification in the pathogenicity of A. alternata.
JnArticleKeywords
Page Content
ArticleCopyright
© 2009 The American Phytopathological Society