Link to home

Analysis of Silencing Escape of Tomato leaf curl virus: An Evaluation of the Role of DNA Methylation

June 2006 , Volume 19 , Number  6
Pages  614 - 624

Xue-Yu Bian , 1 M. Saif Rasheed , 1 , 2 , 3 Mark J. Seemanpillai , 1 , 2 and M. Ali Rezaian 1

1CSIRO Plant Industry, PO Box 350, Glen Osmond, SA 5064, Australia; 2School of Agriculture and Wine, The University of Adelaide, Glen Osmond, SA 5064, Australia; 3National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577, Jhang Road, Faisalabad, Pakistan


Go to article:
Accepted 24 January 2006.

RNA silencing is a sequence-specific mechanism regulating gene expression and has been used successfully for antiviral defense against RNA viruses. Similar strategies to develop resistance against DNA containing Tomato leaf curl virus (TLCV) and some other geminiviruses have been unsuccessful. To analyze this silencing escape, we transformed tomato plants with a hairpin construct from the TLCV C2 open reading frame (ORF). The transgenic plants showed a strong RNA silencing response, and following TLCV inoculation, their infection was delayed. However, the viral infection was not prevented and TLCV DNA accumulated to the levels found in nontransgenic plants. To determine the fate of a transgene carrying homology to the virus, we used transgenic plants carrying the TLCV C4 gene, which induces a distinct phenotype. Upon TLCV infection, the phenotype was abolished and C4 transcript disappeared. Concurrently, TLCV-specific small interfering RNAs were produced. In situ hybridization showed abundant levels of TLCV DNA in phloem cells of TLCV-infected C4 trans-genic plants. However, the C4 transcripts were no longer detectable in nonvascular cells. Analysis of the transgene by methylation sequencing revealed a high level of de novo methylation of asymmetric cytosines in both the C4 ORF and its 35S promoter. A high level of methylation also was found at both symmetric and asymmetric cytosines of the complementary-sense strand of TLCV double-stranded DNA. Given the previous finding that methylated geminivi-ral DNA is not competent for replication, we provide a model whereby TLCV evades host defense through a population of de novo synthesized unmethylated DNA.


Additional keywords: begomoviruses, gene silencing, transgenic resistance.

© 2006 The American Phytopathological Society