Link to home

Regulation of AHL Production and Its Contribution to Epiphytic Fitness in Pseudomonas syringae

May 2004 , Volume 17 , Number  5
Pages  521 - 531

Beatriz Quiñones , Catherine J. Pujol , and Steven E. Lindow

Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, U.S.A.

Go to article:
Accepted 29 November 2003.

Pseudomonas syringae forms large cell aggregates that are more stress tolerant than solitary cells during epiphytic growth on plants. The differential survival of aggregates on leaves suggests that epiphytic fitness traits may be controlled in a density-dependent manner via cell-cell signaling. We investigated this hypothesis in P. syringae B728a. Synthesis of N-acyl-homoserine lactone (AHL), 3-oxo-hexanoyl homo-serine lactone, and the expression of the gene encoding AHL synthase ahlI were maximal at high cell concentrations. The expression of the AHL regulator ahlR, in contrast, was similar at all cell concentrations. A screen of Tn5 mutants revealed that P. syringae B728a requires a novel transcriptional activator for AHL production. This regulator, which belongs to the TetR family, was also required for epiphytic fitness and has been designated AefR (for AHL and epiphytic fitness regulator). The expression of ahlI was greatly reduced in both aefR¯ and gacA¯ mutants and was completely restored in either mutant after addition of exogenous AHL. In contrast, the expression of aefR was not reduced in either gacS¯ or gacA¯ mutants. Thus, AefR appears to positively regulate AHL production independently of the regulators GacS/GacA and also controls traits in P. syringae B728a that are required for epiphytic colonization.

Additional keywords: acyl-homoserine lactone, AefR, AhlI, AhlR, epiphytic bacteria, quorum sensing.

© 2004 The American Phytopathological Society