Link to home

Aphid-Induced Defense Responses in Mi-1-Mediated Compatible and Incompatible Tomato Interactions

August 2003 , Volume 16 , Number  8
Pages  699 - 708

Oscar Martinez de Ilarduya , QiGuang Xie , and Isgouhi Kaloshian

Department of Nematology, 1303 Webber Hall, University of California, Riverside, CA 92521 U.S.A.


Go to article:
Accepted 19 April 2003.

The tomato Mi-1 gene confers resistance to three species of root-knot nematode and potato aphid. We studied changes in expression of jasmonic acid (JA)- and salicylic acid (SA)- dependent defense genes in response to potato and green peach aphids. We determined changes in three PR proteins, lipoxygenase and proteinase inhibitors I and II transcripts, locally and systemically in both compatible and incompatible interactions in tomato. Transcripts for PR-1 were detected earlier and accumulated to higher levels in the incompatible than in the compatible potato aphid/tomato interactions. The transcript profiles of the other genes were similar in compatible compared with incompatible interactions. Pin1 and Pin2 RNAs were detected early and transiently in both compatible and incompatible interactions. In tomato plants containing Mi-1, systemic expression of PR-1 and GluB was detected in both compatible and incompatible interactions at 48 h after infestations with either aphid. These results suggest that aphid feeding involves both SA and JA/ethylene plant defense signaling pathways and that Mi-1-mediated resistance might involve a SA-dependent signaling pathway. Potato aphid feeding generated reactive oxygen species in both compatible and incompatible interactions. However, a hypersensitive response was absent in the Mi-1-mediated resistance response to potato aphids. Reciprocal grafting experiments revealed that resistance is cell autonomous, and local expression of Mi-1 is required for Mi-1-mediated resistance against the potato aphid.



© 2003 The American Phytopathological Society