Link to home

Rapid Colorimetric Quantification of Lipo-chitooligosaccharides from Mesorhizobium loti and Sinorhizobium meliloti

September 2002 , Volume 15 , Number  9
Pages  859 - 865

Joachim Goedhart , 1 Jean-Jacques Bono , 2 Theodorus W. J. Gadella , Jr. 1

1Laboratory for Molecular Biology, MicroSpectroscopy Center Wageningen, Department of Plant Sciences, Wageningen University, Dreijenlaan 3, 6703 HA, Wageningen, The Netherlands; 2Signaux et Messages Cellulaires chez les Végétaux, UMR CNRS-UPS 5546, Pôle de Biotechnologie Végétale, 24 chemin de Borde Rouge, BP 17 Auzeville, 31326 Castanet-Tolosan, France

Go to article:
Accepted 23 April 2002.

Nod factors are lipids with a chitinlike headgroup produced by gram-negative Rhizobium bacteria. These lipo-chitooligosaccharides (LCOs) are essential signaling molecules for accomplishing symbiosis between the bacteria and roots of legume plants. Despite their important role in the Rhizobium-legume interaction, no fast and sensitive Nod factor quantification methods exist. Here, we report two different quantification methods. The first is based on the enzymatic hydrolysis of Nod factors to release N-acetylglucosamine (GlcNAc), which can subsequently be quantified. It is shown that the degrading enzyme, glusulase, releases exactly two GlcNAc units per pentameric nodulation factor from Mesorhizobium loti factor, allowing quantification of LCOs from Mesorhizobium loti. The second method is based on a specific type of Nod factors that are sulfated on the reducing GlcNAc, allowing quantification analogous to the quantification of sulfolipids. Here, a two-phase extraction method is used in the presence of methylene blue, which specifically forms an ion pair with sulfated lipids. The blue ion pair partitions into the organic phase, after which the methylene blue signal can be quantified. To enable Nod factor quantification with this method, the organic phase was modified and the partitioning was evaluated using fluorescent and radiolabeled sulfated Nod factors. It is shown that sulfated LCOs can be quantified with this method, using sodium dodecyl sulfate for calibration. Both methods allow Nod factor quantification in parallel enabling a fast and easy detection of nanomole quantities of Nod factors. Accurate Nod factor quantification will be crucial for characterization and cross-comparison of the affinity for Nod factors of newly identified Nod factor binding proteins or putative Nod factor receptors.

Additional keywords: BODIPY , chitinase , β-glucuronidase , Reissig .

© 2002 The American Phytopathological Society