Link to home

Fungal ABC Transporters and Microbial Interactions in Natural Environments

November 2002 , Volume 15 , Number  11
Pages  1,165 - 1,172

Henk-jan Schoonbeek , Jos M. Raaijmakers , and Maarten A. De Waard

Laboratory of Phytopathology, Department of Plant Sciences, Wageningen University, P.O. Box 8025, 6700 EE, Wageningen, The Netherlands

Go to article:
Accepted 12 July 2002.

In natural environments, microorganisms are exposed to a wide variety of antibiotic compounds produced by competing organisms. Target organisms have evolved various mechanisms of natural resistance to these metabolites. In this study, the role of ATP-binding cassette (ABC) transporters in interactions between the plant-pathogenic fungus Botrytis cinerea and antibiotic-producing Pseudomonas bacteria was investigated in detail. We discovered that 2,4-diacetylphloroglucinol, phenazine-1-carboxylic acid and phenazine-1-carboxamide (PCN), broad-spectrum antibiotics produced by Pseudomonas spp., induced expression of several ABC transporter genes in B. cinerea. Phenazines strongly induced expression of BcatrB, and ΔBcatrB mutants were significantly more sensitive to these antibiotics than their parental strain. Treatment of B. cinerea germlings with PCN strongly affected the accumulation of [14C]fludioxonil, a phenylpyrrole fungicide known to be transported by BcatrB, indicating that phenazines also are transported by BcatrB. Pseudomonas strains producing phenazines displayed a stronger antagonistic activity in vitro toward ΔBcatrB mutants than to the parental B. cinerea strain. On tomato leaves, phenazine-producing Pseudomonas strains were significantly more effective in reducing gray mold symptoms incited by a ΔBcatrB mutant than by the parental strain. We conclude that the ABC transporter BcatrB provides protection to B. cinerea in phenazine-mediated interactions with Pseudomonas spp. Collectively, these results indicate that fungal ABC transporters can play an important role in antibiotic-mediated interactions between bacteria and fungi in plant-associated environments. The implications of these findings for the implementation and sustainability of crop protection by antagonistic microorganisms are discussed.

© 2002 The American Phytopathological Society