Link to home

Disruption of the Alternative Oxidase Gene in Magnaporthe grisea and Its Impact on Host Infection

May 2002 , Volume 15 , Number  5
Pages  493 - 500

Cruz Avila-Adame and Wolfram Köller

Department of Plant Pathology, Cornell University, New York State Agricultural Experiment Station, Geneva, 14456, U.S.A.


Go to article:
Accepted 31 January 2002.

Plants and numerous fungi including Magnaporthe grisea protect mitochondria from interference by respiration inhibitors by expressing alternative oxidase, the enzymatic core of alternative respiration. The alternative oxidase gene AOXMg of M. grisea was disrupted. Several lines of evidence suggested that the disruption of AOXMg was sufficient to completely curb the expression of alternative respiration. In the infection of barley leaves, several AOXMg-minus and, thus, alternative respiration-deficient mutants of M. grisea retained their pathogenicity without significant impairment of virulence. However, differences between the wild-type strain and an AOXMg-minus mutant were apparent under oxidative stress conditions generated by the treatment of infected barley leaves with the commercial respiration inhibitor azoxystrobin. Symptom development was effectively suppressed on leaves infected with the alternative respiration-deficient mutant, while lesions on leaves infected with the wild-type strain continued to develop at much higher inhibitor doses. However, respective lesions rarely developed to the stage of full maturity. The results did not conform to a previous model implying that expression of alternative respiration is silenced during pathogenesis by the presence of constitutive plant antioxidants. Rather, alternative respiration provided protection from azox-ystrobin during both saprophytic and infectious stages of the pathogen. The nature of similar oxidative stress conditions in the ecology of M. grisea remains an open question.



© 2002 The American Phytopathological Society