The impact of *Phytophthora ramorum* on Canada

Eric Allen, **Brenda Callan**, **Lesley Cree**, **Shane Sela**, 1
1Natural Resources Canada, Canadian Forest Service, Victoria, British Columbia, Canada.
2Canadian Food Inspection Agency, Plant Health Risk Assessment, Ottawa, Ontario, Canada.
3Canadian Food Inspection Agency, Plant Health, Victoria, British Columbia, Canada.

To date, neither Sudden Oak Death (SOD) nor its causal agent *Phytophthora ramorum* has been detected in Canada, despite 2 years of concerted effort by Canadian regulatory and scientific authorities. Nonetheless, economic consequences for Canadian governments and industries can be attributed to the discovery of SOD in California and the subsequent regulatory activities undertaken to protect Canadian resources from this potentially devastating disease.

The Canadian Food Inspection Agency (CFIA), the federal body responsible for phytosanitary issues in Canada, first saw reports of SOD in California in the fall of 1999 and soon after published a pest alert on the disease. Through 2000, as reports of the disease spreading within California grew, so did concern within and outside the United States. It was recognized that trade in horticultural and forest products originating in infested areas could spread this disease. In 1999, before any regulatory controls were established for SOD, Canada imported nearly 1.9 million live plants from the State of California, presenting potential pathways for introducing the pathogen to new areas. In light of the possibility that these imports could introduce *P. ramorum* to Canada with potentially serious consequences, regulatory controls were considered necessary.

In March 2001, Canada imposed import restrictions on commodities deemed to be high risk and originating from areas of the U.S. and Europe known to have the disease. These included all propagative and non-propagative material including nursery stock, logs with bark attached, lumber, bark, mulch, acorns, sawdust, pulpwood, and firewood, of all species of oak (*Quercus* spp.), tanoak (*Lithocarpus* spp.), and rhododendron (*Rhododendron* spp.), as well as soil alone or in association with plant material.

A Canadian pest risk assessment (PRA), completed in the fall of 2001, identified the potential distribution and host range of *P. ramorum* should it be introduced to Canada, the means by
which introduction could occur, and the potential magnitude of
the economic and environmental impacts that could result.
Limited knowledge about *P. ramorum* contributed to a high level
of uncertainty in the assessment. Nonetheless, the PRA
concluded that the potential consequences of introduction were
high and that economic loss to both the forestry and
horticulture industries and damage to susceptible flora in
natural environments could be expected to occur where the
organism became established. Potential impacts were estimated
to include direct and indirect losses to the horticulture industry
through loss of markets and increased costs of production for
rhododendrons and other species, and direct and indirect costs
to the forest sector through impacts on oaks and maples in
particular. Environmental impacts were estimated to be high
due to the environmental significance of many of the known
host species, particularly effects to understory species in natural
forest stands. For example, failure to maintain pest-free status
could jeopardize Canada’s export trade for rhododendrons,
which was valued at $5 million in 2000. The potential losses
could be much higher than that if one considers consequential
losses to other exports of horticultural stock or wood products
and the potential for direct losses to various important domestic
resources, including eastern red oaks.

As scientific understanding of the disease has improved, the
CFIA has responded by relaxing some import measures such as
regulatory controls applying to lumber, sawdust, and fruits. At
the same time new hosts have been reported, and these have
come under regulatory control over time. At present, Canada
regulates the entry of 17 genera, many of which are imported
horticultural species. The current version of the regulations may
be viewed at:
(http://www.inspection.gc.ca/english/plaveg/protect/dir/d-01-
01e.shtml).

These quarantine actions have had economic impacts. Canadian
importers and distributors of propagative plant material have
found it hard to obtain desired products from some traditional
sources as a result of controls or prohibitions applied to some of
these commodities. At the same time, significant government
resources have been expended in designing and implementing
regulations and surveillance activities and in engaging foreign
authorities in monitoring exports. These activities in support of
Canada’s current pest-free status are an integral part of
ongoing efforts to combat SOD.

The horticultural nursery industry, particularly in British
Columbia, is the key sector being affected by import
regulations. The most significant impact to the horticultural
sector has been to those commercial nurseries that import retail
planting and propagation stock from California or Oregon. Some
nurseries estimate that sales of up to $250,000 (Can$) were
lost when access to propagative material was restricted by the
SOD quarantine. This figure represents 6-7% of the total
Canadian nursery farm sales. One retail nursery reported that in
2001 approximately $50,000 (Can$) in sales of indoor palms normally obtained from California was lost as a consequence of the exporting nursery being brought under regulatory prohibitions. In addition, for some nurseries, the total effects of the quarantine will not be felt for several years because propagative material that could not be obtained in 2002 would not have been ready for sale until 2005 or 2006. The opportunity costs of such future impacts will be affected by future trade patterns and value of the Canadian dollar at the time the plants mature and are therefore difficult to quantify.

Trade statistics (Table 1) further demonstrate the significant impact to horticultural revenues as a consequence of SOD quarantines. These figures indicate a 60% drop in imports of regulated commodities whereas unregulated commodities were unaffected. Although other economic factors may have influenced changes in the numbers provided in Table 1, the application of the SOD quarantine had some measurable impact. The prohibition of importation of strawberry plants with soil from California, for example, had an initial impact on strawberry production in Canada that was relieved after the establishment of a certification program that allowed trade to resume.

<table>
<thead>
<tr>
<th>Commodity imported from California</th>
<th>Prior to Canadian SOD Quarantine (1999)</th>
<th>Following establishment of Canadian SOD Quarantine (2001)</th>
<th>Following establishment of Canadian Quarantine and introduction of certification approaches to permit some imports (e.g., non-hosts in soil (Jan. - Sept. 2002))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhododendron (a host of SOD prohibited entry to Canada)</td>
<td>$50,300</td>
<td>$19,000</td>
<td>N/A</td>
</tr>
<tr>
<td>Strawberry plants for propagation (not a regulated host but exported in soil which)</td>
<td>$1,020,300</td>
<td>$411,700</td>
<td>$821,600</td>
</tr>
</tbody>
</table>
In addition to the direct impact on industry from market access restrictions, significant financial and human resources have been expended by government departments in developing and implementing regulations. A small part of this was in the actual crafting of the necessary documentation, including the PRA, import policy documents, and publications for public dissemination. A much more significant effort was made in undertaking a national survey to determine whether Phytophthora ramorum was present in Canada. The survey targeted Canadian nurseries that imported potential P. ramorum host material from California, Oregon, and other infested areas from 1997 to 2002 as well as established botanical gardens known to feature susceptible host genera. Plant material from these nurseries and gardens and from known hosts within a 100-meter buffer around such the nurseries was sampled and cultured for diagnostic purposes. The cost of this survey was in excess of $120,000 (Can$).

In summary, while Canada currently remains free of Sudden Oak Death, the mere presence of the pathogen elsewhere in the world has resulted in an estimated domestic economic impact approaching $1 million (Can$). This figure will grow as further trade impacts are felt and as surveys for the disease continue. Although this cost is relatively small compared with the potential costs of introduction of P. ramorum, it is nonetheless substantial to the small businesses that rely on uninterrupted trade and that are the most affected by current quarantine measures. As our scientific understanding of this disease improves, regulatory responses will evolve that provide necessary phytosanitary protection with minimal impact on trade.