Cast Your Vote by May 30 for Vice President and Councilor-at-Large

The APS Nominations Committee is pleased to announce that Margaret Daub, North Carolina State University, and Timothy Murray, Washington State University (WSU), are running for vice president of APS. Candidates for councilor-at-large are Lindsey du Toit, WSU, and Mary Hausbeck, Michigan State University. Members can make their selections for the 2014 APS election through May 30, 2014. Profiles and statements of vision for these new candidates for office begin on page 74 of this issue. APS members were sent a broadcast e-mail on April 29, 2014, with instructions for voting (members without an e-mail address were mailed ballots). Ballots must be submitted by May 30. All votes are confidential. Please contact Cindy Scheller (cscheller@scisoc.org) if you did not receive an e-mail. Results of the 2014 election will be announced in the July issue of Phytopathology News and on the APS website.

APS Announces the 2014 APS Award Winners

Congratulations to our fellow members and colleagues selected to receive APS awards in honor of their significant contributions to the science of plant pathology. These awards will be presented to the recipients at this year’s APS-CPS Joint Meeting in Minneapolis. Visit www.apsnet.org/members/awards/pages/2014APSAnnounced for more information on each awardee.

FELLOWS
James E. Adaskaveg, University of California
Christopher A. Clark, Louisiana State University
Thomas R. Gordon, University of California
Stewart M. Gray, USDA ARS
Mary K. Hausbeck, Michigan State University
George W. Hudler, Cornell University
Roger A. C. Jones, University of Western Australia
Gary W. Moorman, The Pennsylvania State University
Tomonori Shiraishi, Okayama University, Research Institute for Biological Science

James R. Steadman, University of Nebraska
Brett M. Tyler, Oregon State University

EXCELLENCE IN EXTENSION AWARD
Mohamed F. R. Khan, North Dakota State University

EXCELLENCE IN INDUSTRY AWARD
Steven Gylling, Gylling Data Management Inc.

EXCELLENCE IN REGULATORY AFFAIRS AND CROP SECURITY AWARD
Kenneth C. Eastwell, Washington State University

EXCELLENCE IN TEACHING AWARD
Joseph-Alexander Verreet, University of Kiel

INTERNATIONAL SERVICE AWARD
Valerie Verdier, Colorado State University, Institut de Recherche pour le Développement

RUTH ALLEN AWARD
Ignazio Carbone, North Carolina State University

LEE M. HUTCHINS AWARD
Natalia A. Peres, University of Florida

NOEL T. KEEN AWARD FOR RESEARCH EXCELLENCE IN MOLECULAR PLANT PATHOLOGY
Pradeep Kachroo, University of Kentucky

SYNGENTA AWARD
Alison E. Robertson, Iowa State University

In this Issue
Editor’s Corner 66
APS-CPS Joint Meeting 67
Public Policy Update 72
Leadership Institute 73
Candidates for APS Office 74
People 78
Classifieds 81
APS Journal Articles 83
Calendar of Events 84
Editor's Corner

Seaman Knapp: Father of the Cooperative Extension Service

Doug Jardine, Kansas State University, PhytoNewsEditor@scisoc.org

With the celebration of the passing of the Smith-Lever Act 100 years ago on May 8, 1914, I took a straw poll among some of my extension colleagues asking them if they had ever heard of Seaman Knapp. To my dismay, no one seemed to recognize the name. Considering that all plant pathologists who have an extension appointment have a direct link back to this agricultural education pioneer, you are about to learn a little more about the man who many consider the father of the cooperative extension service.

In tribute to the centennial anniversary of the Smith-Lever Act, I took up the task this past winter of reading Seaman A. Knapp: Schoolmaster of American Agriculture by biographer Joseph C. Bailey. Knapp was born in northeastern New York in 1833 and eventually graduated from Union College in Schenectady. He was a student of Eliphalet Nott, president of Union College. Knapp worked on a college farm established by Nott where demonstrations in horticulture were conducted. This may have served as the seed to Knapp’s later greatness.

Knapp had a highly diversified career. He was a faculty member of the Washington County Seminary and Collegiate Institute in Ft. Edward, NY, and later served as pastor of the Methodist Episcopal Church in Vinton, IA, where he moved in 1866 to establish a purebred Merino sheep herd. He gave up his pastorate to become superintendent of the Iowa Institute for the Education of the Blind in Vinton. He later took up pig breeding and was an original stockholder in The Farmer’s Journal. He developed a series of articles—“Falls on Pigs”—where he established a fictitious dialogue with “neighbor Tom,” who is the embodiment of rustic skepticism about thoroughbred stock and newfangled methods of care.

In 1879, he was appointed to the newly established chair of practical and experimental agriculture at the Iowa State Agricultural College. In this position, he was superintendent of the college farm and directed agricultural research at the school. Knapp helped create the initial push of a bill through Congress that became the basis for the Hatch Experiment Station Act. In 1885, he became a land investor, moving to Louisiana where he purchased 1.5 million acres of land in four western parishes from the state and federal governments for prices ranging from 12.5 cents/acre for marshland to 75 cents/acre for prairie land. Over the next two decades, he brought rice production to the south, even importing improved rice varieties from Japan that he had personally selected while traveling throughout that country. As they say, however, the best was yet to come.

At 69, when most men of that age were retired or at least seriously contemplating it, he was appointed by the Department of Agriculture as special agent for the promotion of agriculture in the South. He was to continue rice-seed testing as well as experiments in rice breeding, fertilization, and rotation. Knapp sought to answer the question, “How can the people be reached so as to take hold and adopt these better methods?” Demonstration farms on experiment stations had not been successful because of the general mistrust of the farmer for the “government farms.” Undeterred, in 1903, Knapp tried again in Terrell, TX, using a new model. The model established that Walter Porter, a local farmer, would farm using methods outlined by Knapp. Any profit obtained by Porter would be his to keep and any losses would be covered by locally raised subscription funds. In other words, Porter had nothing to lose. In the first year, Porter made a $700 profit and vowed to farm his entire 800 acres the following year on the principles just tested. From this sprang the now famous quote of Knapp’s: “What a man hears he may doubt, what he sees he may possibly doubt, but what he does himself he cannot doubt.”

The technique was transferred to northern and western states beginning in 1911 and the efforts were led by W. J. Spillman, who worked for the Farm Management Agency (FMA). Spillman is credited with the technique of identifying early adopters within the community—those willing to try something new with no guarantee of success. When neighbors observed their success, they too were willing to adopt the new technique. Both Knapp and Spillman hired “agents” to carry out the spread of this demonstration work. For Knapp, many of the men were the farmers who carried out the first local demonstration work. For Spillman, it was men already working for FMA. These men were the forerunners of the modern county agent.

Knapp died in 1911, three years before Congress passed the Smith-Lever Act, but it was largely through his work that the passage of the bill was assured. His life and career was best summed up by an unidentified writer who referred to him as “a combination of Socrates, Benjamin Franklin, and Horace Greeley.” Another time he was referred to as a bucolic Benjamin Franklin. Just as Franklin was a Renaissance man during Revolutionary times, so too was Knapp a Renaissance man of American agriculture. Next month, I will share more on the Smith-Lever Act.
Plenary Speakers to Address the Important Connections Between Soil Health, Plant Health, Food Security, and Human Health

This year’s plenary speakers will address the critical connections between plant health, world ecology, and human health. **Jan E. Leach** will discuss the impact of soil health (in particular soil health management practices) on plant health and the role and connections of the phytobiomes to plant health and productivity. **Harold van Es** will introduce the emerging concept of soil health, assessment protocols, sustainable management practices, and the overall impact on soil functions. **Jennifer Ann Thomson** will address the connections between healthy plants and food availability and their impact on world food security and poverty issues.

Leach, a university distinguished professor at Colorado State University and an adjunct scientist at the International Rice Research Institute, focuses her research on understanding the molecular basis of durable disease resistance, particularly in rice-pathogen interactions. She is past president and a fellow of APS and currently serves as chair of the APS Public Policy Board. She is also a fellow of the American Association for the Advancement of Science and the American Academy of Microbiology. She served as president of the International Society of Molecular Plant-Microbe Interactions and editor-in-chief of *Molecular Plant-Microbe Interactions*. She is currently associate editor of the *Annual Review of Phytopathology*. Leach has served on or chaired many advisory committees, including the U.S. Rice Genome Sequencing Project and the National Science Advisory Board for Biosecurity. She has B.S. and M.S. degrees in microbiology from the University of Nebraska and a Ph.D. degree in plant pathology from the University of Wisconsin and was a post-doctoral fellow at East Malling Research in Kent, England.

van Es is a professor of soil and water management and former chair of the Department of Crop and Soil Sciences at Cornell University. He received degrees from the University of Amsterdam, Iowa State University, and North Carolina State University. He works on practical approaches to precision soil management, with current emphases on a holistic soil health management framework and a computational tool for adaptive nitrogen management. He has published more than 110 peer-reviewed papers and chapters; coauthored a widely read book on sustainable soil management, *Building Soils for Better Crops*; developed numerous extension articles and videos; and advised 45 graduate students. He teaches an undergraduate course in soil management for sustainability and a graduate course on space-time statistics. He is a fellow of both the Soil Science Society of America and the American Society of Agronomy.

Thomson has a Ph.D. degree in microbiology from Rhodes University in South Africa. A former post-doctoral fellow at Harvard Medical School, Thomson is now a professor of microbiology in the Department of Molecular and Cell Biology at the University of Cape Town (UCT) in South Africa, where her main current research interests are in the development of maize resistant to the African endemic maize streak virus (MSV) and tolerant to drought. Field trials of MSV-resistant and drought-tolerant maize lines are under way and these will be the first analyses and trials of a transgenic plant developed in Africa, for an African problem, using African plant genes. She is a fellow of the Royal Society of South Africa and of UCT. Honors received include the L’Oreal/UNESCO prize for Women in Science and an honorary doctorate from the Sorbonne in Paris. Thomson is a regular writer and speaker internationally on the subject of genetically modified organisms, especially crops and foods derived from them. She addressed the World Economic Forum in Davos and the United Nations as the guest of Secretary General Kofi Annan. Thomson’s two books, *Genes for Africa* and *Seeds for the Future*, are written for the interested layperson.

IMPORTANT DATES

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 14</td>
<td>Advanced registration ends</td>
</tr>
<tr>
<td>July 8</td>
<td>Regular registration deadline</td>
</tr>
<tr>
<td>July 10</td>
<td>Hotel registration deadline to guarantee discounted room rate</td>
</tr>
</tbody>
</table>

Book your hotel, register, and view the full program, including scientific sessions and speakers, meeting highlights, and special events, at www.apsnet.org/meet.
Thinking about Becoming More Involved in APS?

Nothing happens at APS without the ideas, energy, and commitment of APS members. Whether you are new to the society, haven’t served on a committee before, or it’s just been a long time since you last were involved—now is the time to volunteer.

Your Engagement Makes Things Happen

APS committee members tackle important issues. We have committees that cover the breadth of the science from diagnostics to genomics to modeling to keeping members informed of the latest scientific and public policy developments. Committees play a major role in the development of program content for APS meetings by proposing special sessions, symposia, workshops, and field trips. They also serve an important role by keeping each other updated on important issues and developments that impact our science. With many committees to choose from, it’s easy to become involved in APS and all members are welcome to participate. Committee involvement is also a great way to meet other APS members with similar interests and build your professional network.

Your Level of Commitment Is Flexible

Committee members serve a three-year term, which is renewable. They participate in committee meetings held at the beginning of the APS Annual Meeting and can be involved in discussions and projects throughout the year. The nature and extent of the activities of each committee depend on its mission and current priorities, as well as the imagination, enthusiasm, and dedication of its members. As an active committee member, you can make a difference, but you also have the flexibility to be involved at the level that is right for you.

Your Involvement Is Important

Whatever your area of interest, there is a good fit waiting for you. Simply go to www.apsnet.org/_layouts/apsforms/comminvite.aspx and complete the committee interest form by July 15, 2014. Be sure to attend the committee meeting in which you are interested during the APS-CSP Joint Meeting in Minneapolis. Locations and times for each of the many committee meetings will be listed on the meeting website and in the meeting book.

Still not sure which APS committee is right for you? Stop by any of the committee meetings at the joint meeting and see what your fellow plant pathologists are talking about. These are open meetings and no commitment is required to participate. Check them out and learn what they are working on, where the science is going, and what makes them tick. You will be glad you did!

Your expertise and enthusiasm are needed. Be part of the most active, talented, and engaged group of member leaders—join an APS committee this year!

New APS Ed Center Learning Module Aims to Close Widening Gaps in Epidemiological Modeling

Over the years, simulation modeling has become an important aspect of plant disease epidemiology and its use is increasing rapidly. Modeling helps scientists synthesize data on epidemiological processes, predict epidemiological patterns, identify knowledge gaps, and even aid experiment design. But, as modeling grows in use, so does the disconnect between field epidemiologists, who collect data, and epidemiological modelers, who actually develop the models.

To help fill this growing gap and help students gain exposure to plant pathology, plant protection, systems analysis, and simulation modeling applied to ecological systems, a 10-chapter module on simulation modeling was produced by Serge Savary and Laetitia Willecoq of the French National Institute for Agricultural Research (INRA) in Toulouse, France.

This module, entitled “Simulation Modeling in Botanical Epidemiology and Crop Loss Analysis,” provides the basic concepts, methods, and approaches in the field of systems analysis applied to botanical epidemiology. To that aim, simulation models are used and applied to the dynamics of epidemics and yield losses.

While this comprehensive module is mainly intended for graduate students, it can also be accessible to undergraduates, as no specific knowledge of calculus, systems analysis, or even plant pathology is required. The lessons in this module can also be used for practical work. This open-access online publication particularly highlights, illustrates, and implements the linkages between models and data. Chapters specifically cover:

• a general introduction to simulation models
• a presentation of concepts and basic examples
• simulation modeling in plant disease epidemiology
• perspectives of simulation modeling in plant disease epidemiology
• simulation modeling of crop growth, yield losses, and their applications to rice and wheat
• a discussion on the concepts associated with model evaluation

Lesson notes for instructors, students, and other users are conveniently provided, as is information about how to download and run the simulation models. Visit this useful resource in the APS Education Center at www.apsnet.org/edcenter/advanced/topics/botanicalepidemiology.
New Academic Unit Leaders Forum Initiated

THOMAS BAUM, AULF CHAIR, TBAUM@IASTATE.EDU

APS regularly looks for ways to seek out broad perspectives on a diversity of issues and challenges confronting plant pathology. Working with the department heads and chairs of the various plant pathology departments has been key to identifying critical issues in the discipline and determining best approaches for addressing those concerns. But as the dynamic in academia continues to change, it was becoming increasingly apparent that having a formal structure to ensure responsiveness to identified issues was needed. Additionally, ensuring our efforts are inclusive of our plant pathology colleagues who may be in integrated departments with department heads who are not always a plant pathologist has become even more important.

At last year’s Department Heads Breakfast during the APS-MSA Joint Annual Meeting, one item discussed was to explore having the department heads/chairs as an organized, recognizable, and permanent unit within APS. This initiative was put forward as a formal proposal to APS Council and, as a result, the Academic Unit Leaders Forum (AULF) has been created as a standing administrative group within APS. Full details on the organizational structure are available at www.apsnet.org/about/governance/MoO/Administrative/Pages/AcademicUnitLeadersForum.aspx. As such, this group will have more visibility, have a better connection to APS leadership, be supported by APS staff, and perfectly positioned to tackle issues of relevance.

AUTHOR SUBMISSIONS DUE SEPTEMBER 30, 2014

MPMI FOCUS ISSUE TO ADDRESS THE GOOD, BAD, AND UNKNOWN OF GENOMICS

Rapid advances in genomics offer novel opportunities and tools for exploring the biology, ecology, evolution, and diversity of plant-associated microbes and how microbial processes are interconnected with the evolution and function of plants. Considering the vast diversity of microbial species in nature, however, what we currently know only represents the very tip of the proverbial iceberg.

Molecular Plant-Microbe Interactions (MPMI) has played a leading role in disseminating new insights into plant-microbe interactions and promoting new approaches. Through a new special MPMI focus issue, entitled “The Good, the Bad, and the Unknown: Genomics-Enabled Discovery of Plant-Associated Microbial Processes and Diversity,” MPMI will continue this role by highlighting work that is advancing genomics-enabled discovery of plant-associated microbial processes and diversity.

MPMI Editor-in-Chief JANE GLAZEBROOK and Focus Issue Editors GWYN BEATTIE, DARRELL DESVEAUX, and SEOGCHAN KANG encourage authors to submit research and perspective articles on the following topics pertaining to plant-associated microbes in their interactions with plants: functional genomics of individual organisms, comparative genomics, evolutionary and population genomics, and genomic analysis and visualization tools.

If you are working on research of this type, submit your papers to MPMI no later than September 30, 2014, and note that you would like to be considered for this Focus Issue. All papers must present new biological knowledge. Papers that are purely descriptive will not be considered. Authors interested in submitting a review should contact Beattie (gbeattie@iastate.edu), Desveaux (darrell.desveaux@utoronto.ca), or Kang (sxk55@psu.edu).

Focus issues such as this offer authors multiple benefits. A single-topic issue gives scientists an opportunity to publish alongside the related work of peers to highlight progress in a focal area. This Focus Issue will be widely promoted and is expected to be highly cited, giving authors maximum exposure. Articles will also be submitted to CrossRef, allowing citation tracking and connectivity as this research area moves forward in MPMI and other scientific journals. Articles of this important and timely issue will also be indexed by ISI Web of Science, PubMed, and other important access portals.

As a consequence of this development, APS will no longer refer to our gathering during the APS meeting as the “Department Heads Breakfast,” but rather the “Academic Unit Leaders Breakfast and Meeting.” You will find this name in this year’s registration materials for the first time, planned for Tuesday, August 12, from 7 a.m. to noon.

During the upcoming AULF meeting, the group will build an action plan for this new concept and explore strategies on how to tackle issues that are of relevance. In alignment with this new effort, we would like to start to identify designated representatives from plant pathology groups within larger academic units that weren’t currently tracked by APS. If this applies to your department, please have internal discussions on who should be the departmental representative to AULF and reply to APS staff member CINDY SCHELLER (escheller@scisoc.org) with the contact details for this individual. We would also like to include international perspectives in our discussions and encourage your response and identification of representatives from your respective international academic units.

We look forward to expanded participation and a wealth of new possibilities as a result of this approach. I’m pleased to be serving as the first chair of AULF and welcome your suggestions and input as we develop our plans moving forward. If you have any suggestions, particularly for items that AULF should tackle, please feel free to contact me with your input at tbaum@iastate.edu.

Tell Us Who's the Best of the Best

When you think of an APS member who goes above and beyond in their dedication to APS, who comes to mind? Consider colleagues with determination, passion, and a commitment to making APS the society for plant pathologists. Who works to spread the word about the benefits of APS membership? Who do you know that is a rock-star volunteer? A “mover and a shaker”?

Nominate an outstanding APS volunteer, so that APS can show them our appreciation! Don't let them go unnoticed!

Now is the time to nominate volunteers who go above and beyond for the 2014 APS Outstanding Volunteer Award. Submit your one-page nomination letter to the APS Intermediate Councilor-at-Large MARY PALM (mary.e.palm@gmail.com) with “APS Volunteer Award” in the subject line by MAY 16, 2014. The letter should include a description of your nominee’s recent volunteer activities (within the last five years) and how the nominee excelled in the quality, timeliness, and/or scope of these activities. The recipient(s) will be honored during the 2014 APS-CPS Joint Meeting by APS President GEORGE ABAWI.
Focus on Corn

Seedling Diseases of Corn by Martin Chilvers, assistant professor and extension specialist at Michigan State University, examines the identification and management of seedling diseases that can occur in corn. This 15-minute webcast covers the causes of seedling diseases of corn, current research that is being conducted to understand the seedling disease complex, and management steps that can be taken to reduce seedling disease losses. View this and other corn talks at www.plantmanagementnetwork.org/foc.

Focus on Cotton

Management of Plant Parasitic Nematodes in Cotton by Terry Wheeler at Texas A&M University was developed to help consultants, cotton producers, and other practitioners in the cotton-growing regions of the United States where nematodes affect cotton production. By the end of this presentation, the practitioner should have a good understanding of what management options should be used for specific situations. View this and other cotton talks at www.plantmanagementnetwork.org/foc.

Focus on Potato

The Value of Pesticides, by Jeff Miller, president and CEO of Miller Research, helps users better understand the value of pesticides and their importance in the production of a healthy potato crop. Much information on the Internet focuses on the perceived risk of pesticides and largely ignores the benefits. Miller helps bring balance to users’ viewpoints by providing a general overview of the regulation and benefits of pesticides and the value they add to our society.

In Potato Mop-Top Virus: An Emerging Problem in Potato Production, Jim Crosslin, research plant pathologist at USDA ARS, provides consultants, growers, and other practitioners in the potato-growing regions of the United States with important information on Potato mop-top virus (PMTV), which has been reported relatively recently in several areas of Canada and the United States and is increasing in importance in these regions. This webcast illustrates the various types of symptoms produced by PMTV and provides some guidelines for management of this soilborne virus.

Phytoplasmas in Potatoes by Ian MacRae, extension entomologist at the University of Minnesota (UMN), helps producers and agricultural professionals in potato-producing areas recognize and manage the phytoplasma disease purple top in potatoes. In this presentation, the biology of the phytoplasma causing purple top and its insect vector, the aster leafhopper, are discussed as well as potential management of the disease in potato production. The disease, its symptoms, and impacts are reviewed and the epidemiology resulting from the life history, distribution, and movement of the vector-pathogen complex is presented. View these and other potato talks at www.plantmanagementnetwork.org/fop.

Focus on Tomato

Effective Transgenic Resistance to Bacterial Leaf Spot in Florida Tomatoes by Diana Horvath, director and chief operating officer of the Two Blades Foundation, helps users understand a new approach to fighting bacterial spot disease of tomato, one of the most significant diseases of the fresh market tomato industry. This webcast describes key features of bacterial spot’s causal agent, Xanthomonas, and details the conception and execution of the resistance strategy. The issues of regulatory approvals and consumer concerns are also discussed. View this and other tomato talks at www.plantmanagementnetwork.org/fot.

The Plant Management Network (PMN) has produced more than 60 webcasts in the past year for the “Focus on” webcast resources and for grant outreach. If you would like to see a “Focus on” resource for your crop(s) or to learn more about using PMN for grant outreach, contact Phil Bogdan at +1.651.994.3859 or pbogdan@scisoc.org.
Explore Plant Health Connections
at the 2014 APS–CPS Joint Meeting
August 9–13 • Minneapolis, Minnesota, U.S.A.

Explore These Premeeting Opportunities and Plan Your Travel Accordingly

- North American Late Blight Symposium
 Friday, August 8 – Saturday, August 9
 8:30 a.m. – 5:00 p.m. Friday; 8:30 a.m. – 12:00 p.m. Saturday

- Field Trips
 Forest Health Issues of the Bluff and Coulee Country
 Along the Upper Mississippi River
 Leaving Friday, August 8, 7:30 a.m.; Returning Saturday, August 9, 6:00 p.m.
 Ornamental Field Trip
 Saturday, August 9 • 7:00 a.m. – 5:00 p.m.
 Crop Protection—From Seed to Harvest
 Saturday, August 9 • 7:30 a.m. – 4:45 p.m.
 Minnesota Fungal Foray
 Saturday, August 9 • 8:00 a.m. – 4:00 p.m.
 Turfgrass Pathology Field Trip
 Saturday, August 9 • 9:00 a.m. – 4:00 p.m.

- Workshops
 Design and Principles of Online Courses
 Saturday, August 9 • 8:00 a.m. – 4:00 p.m.
 Analysis of Population Genetic Data in R
 Saturday, August 9 • 9:00 a.m. – 12:00 p.m.
 How to Make Social Media Work for You
 Saturday, August 9 • 1:00 – 5:00 p.m.
 Introduction to Bayesian Analysis in Plant Pathology
 Saturday, August 9 • 1:00 – 5:00 p.m.

Be there. Register now.

View the full program, including scientific sessions and speakers, meeting highlights, and special events.

Book your hotel and register online at
www.apsnet.org/meet

The American Phytopathological Society • Canadian Phytopathological Society
Consider Applying for a PPB Early Career Internship

For several years, the APS Public Policy Board (PPB) has helped develop future leaders in public policy through its successful public policy internship program. Since its inception in 2007, 10 APS early career members have been selected to participate in PPB activities and learn more about how public policy impacts plant pathology. If you have an interest in public policy, consider submitting your application. The PPB early career intern will participate in PPB activities during 2014–2016. The internship is open to APS early career members (current graduate students or post-doctoral associates and junior professionals) and will provide an opportunity to gain hands-on experience in public policy at the national level that relates generally to agricultural science and specifically to matters of interest to APS. By working with PPB, the intern will learn how scientific societies, non-governmental organizations, executive branch agencies (e.g., USDA, NSF, EPA, etc.), and the legislative branch interact in crafting public policy.

In the first year of the internship, the intern will be expected to participate in monthly PPB calls and in the preparation of newsletter items and policy white papers. The intern should be able to attend the 2016 spring governmental outreach meeting of the PPB in Washington, DC (usually mid-March; travel expenses covered by PPB). At the end of the internship, the intern will prepare a written and/or oral report on the experience for delivery to PPB and APS membership. Other activities may include, but are not limited to, the following: attending PPB policy agenda-setting meetings and conference calls and organized workshops, where relevant, and assisting PPB with development, tracking, and analysis of relevant policy issues and with planning Capitol Hill and agency briefings.

More detailed information on this opportunity, including how to apply and summaries of previous interns’ experiences, is available at www.apsnet.org/members/outreach/ppb/Pages/PublicPolicyEarlyCareerInternship.aspx. All application materials must be received by June 27, 2014, and should be sent to Jan Leach, PPB chair, at jan.leach@colostate.edu.

RNAi Biotechnology: Pros and Cons for Crop Improvement

Bryce W. Falk, University of California-Davis, bwfalk@ucdavis.edu

The article by Vicki Vance in the March 2014 issue of Phytopathology News is very interesting and informative and addresses some very important, contemporary issues of particular relevance to plant pathologists regarding RNAi and pest and pathogen control. However, what is most important these days is to discuss issues, particularly pros and cons, in reference to the background of naturally occurring RNAi interactions; in plant pathology there are an incredible number of anti-virus small RNAs (mostly siRNAs) that are generated are so abundant and diverse (thousands of different molecules) that these days we can assemble complete virus genomes merely by sequencing the small RNA population from virus-infected plants (Wu et al., PNAS, 107:1606; Wu et al., PNAS, 109:3938). Some pathogens also use RNAi approaches to successfully infect plants. For example, recent studies have shown that the fungus Botrytis cinerea takes approaches to “hijack the host RNAi machinery” to suppress host immunity and achieve a successful infection in plants (see Weinberg et al., Science 342:118). Even bacteria use CRISPR systems to defend themselves against exogenous genetic elements (Sternbert et al., Nature 507:62). The latter example is not RNAi, but small RNAs are part of the process. Thus, small RNAs and RNAi activities occur every day, everywhere.

Thus, in any discussion of the cons of RNAi approaches, and certainly for pest and/or pathogen control, it is critical to base the discussion against the plethora of naturally occurring background RNAi activity in biology. In any discussions on RNAi, statements such as the potential for creation of “novel siRNAs” that may be produced by RNAi-type transgenesis can be misleading and must be carefully considered relative to natural RNAi incidence. Certainly the RNAi-based resistance in papayas to Papaya ringspot virus (Tennant et al., Eur. J. Plant Pathol. 107: 645) does not generate any novel small RNAs. The resistance transgene is from the virus target. Considering the number of plant viruses...
and the thousands of different small RNAs that result during competent virus infections, it is hard to imagine that novel small RNAs will be generated for anti-viral RNAi-based resistance, especially considering the diversity of viruses and their incidence in agricultural and nonagricultural settings.

Another “con” or potential limitation of RNAi technology discussed by Vance is that as plant viruses encode for silencing suppressors, then if a transgenic plant becomes infected by a plant virus, the virus-encoded silencing suppressor could “suppress the transgene-by a plant virus, the virus-encoded silencing suppressor could “suppress the transgene-induced RNAi.” This is not a risk or “con” that should preclude the use of RNAi technology particularly for pest or pathogen control. If it were to occur all that would result is reversion to wildtype. Furthermore, there is no evidence of this potential “con” having as yet occurred in the hundreds of thousands (more likely millions) of transgenic virus-resistant plants that have been planted commercially so far in the United States.

I am happy that APS, Phytopathology News, and Vance are encouraging this discussion. Discussing RNAi applications is very timely and important. Certainly not all possible RNAi applications are good or safe and off-target effects are a possibility that must be considered in every situation and avoided. But the potential of new RNAi effects must be considered against the tremendous, naturally occurring background of RNAi interactions that are everywhere, particularly in plant pathology.

For scientists, discovery is the ultimate product of research. Regardless of whether it is a fact, a theory, a technique, or an invention, it is a process of creation where something is developed that did not exist before. Similarly, knowledge is the product of learning and when it occurs as a process, it is called education. Transferring that discovery or knowledge to the public and applying it for the greater good is extension and engagement. Discovery, learning, and extension/engagement comprise the three missions of the land-grant institution. However, to successfully implement these missions requires successful leadership.

Successful leaders share numerous traits with successful scientists, chief among them being creativity and perseverance. Successful leaders possess traits of great educators, including the ability to motivate others and explain complex subjects with clarity and coherence. Successful leaders need what are often referred to as the “soft skills” that extension specialists often possess, as well as the ability to work across disciplines and develop teams to achieve their vision.

And yet, when we look at the vast literature on leadership, the university contribution is not only lacking, it is nearly nonexistent. In agriculture, this absence is noteworthy. I would submit our two biggest public failures born out of this lack of leadership in the agricultural sciences exist within the context of the ongoing “controversies” on GMOs and pesticide use. Our failure in leadership is why there even are controversies: GMOs are regularly used for the production of medicines (e.g., insulin, hormones, chemotherapeutics) and chemical intervention for human health is all but unquestioned and certainly not controversial. We see a similar parallel playing out in the field of nanotechnology, a moratorium of which exists with food, but not medicine.

The skills we develop as scientists, educators, and extension specialists allow us to become successful leaders. And yet, too often, we ignore opportunities to use them to lead in places outside of the laboratory. At some point, we need to recognize that the boundaries of knowledge are extended not only by those people working at the edge of discovery, but by those who preserve and support the infrastructure that allows the discoverers to extend the boundaries in the first place. The movement of these boundaries requires a concerted effort by all three missions: That we work together to achieve the discovery, and that we continue to educate and extend that discovery to the public for the public good. It also requires leadership. “If you build it, they will come” works great in a pretend baseball field in Iowa. It will not work in an agricultural field anywhere—not without leaders who can work together to discover, educate, and extend that discovery for everyone.

We are soliciting columnists on the following topics: leadership skills in extension, leadership skills in regulatory plant pathology, leadership skills in industry, finding a niche: getting started on leadership in graduate school, and leadership in a teaching academic setting. Please contact Janna Beckerman (janna@purdue.edu) and/or Bill Schneider (William.Schneider@ARS.USDA.GOV) if you are interested in writing on these topics, or others, for inclusion in a future column.

...our two biggest public failures born out of this lack of leadership in the agricultural sciences exist within the context of the ongoing “controversies” on GMOs and pesticide use.

Leadership Institute

Three Is a Magic Number

Janna Beckerman, Purdue University, janna@purdue.edu, and Bill Schneider, USDA ARS, William.Schneider@ARS.USDA.GOV

For scientists, discovery is the ultimate product of research. Regardless of whether it is a fact, a theory, a technique, or an invention, it is a process of creation where something is developed that did not exist before. Similarly, knowledge is the product of learning and when it occurs as a process, it is called education. Transferring that discovery or knowledge to the public and applying it for the greater good is extension and engagement. Discovery, learning, and extension/engagement comprise the three missions of the land-grant institution. However, to successfully implement these missions requires successful leadership.

Successful leaders share numerous traits with successful scientists, chief among them being creativity and perseverance. Successful leaders possess traits of great educators, including the ability to motivate others and explain complex subjects with clarity and coherence. Successful leaders need what are often referred to as the “soft skills” that extension specialists often possess, as well as the ability to work across disciplines and develop teams to achieve their vision.

And yet, when we look at the vast literature on leadership, the university contribution is not only lacking, it is nearly nonexistent. In agriculture, this absence is noteworthy. I would submit our two biggest public failures born out of this lack of leadership in the agricultural sciences exist within the context of the ongoing “controversies” on GMOs and pesticide use. Our failure in leadership is why there even are controversies: GMOs are regularly used for the production of medicines (e.g., insulin, hormones, chemotherapeutics)

Donate Items for the 10th Annual OIP Silent Auction!

For the tenth year in a row, the APS Office of International Programs (OIP) presents the Silent Auction at the APS-CPS Joint Meeting in Minneapolis, MN, on Sunday, August 10, 2014, from noon to 6 p.m. Help fund OIP’s Global Experience Program by donating your fun and unique cultural items from around the world to be part of the auction. Visit www.apsnet.org/members/outreach/oip/pages/silentauction.aspx for more information!
Candidates for Vice President

Margaret E. Daub

Professor, Department of Plant and Microbial Biology, North Carolina State University (NCSU), Raleigh, NC

Area of Specialization: Molecular biology of fungal pathogenesis, photoactivated toxins, genetic engineering for disease resistance.

Brief Description of Professional Achievements: I joined the Department of Plant Pathology at NCSU in 1983 in a research and teaching position. In research, I have a long-term interest in the role of light-activated toxins in pathogenicity by Cercospora species and related fungi, including studies on mode of action, biosynthesis, and resistance. I taught the undergraduate general plant pathology course and graduate fungal-plant interactions course. In 1999, I was appointed head of the Department of Botany, now the Department of Plant and Microbial Biology, formed through departmental realignments. In my role as department head, I provide leadership for the department’s teaching, research, and extension missions. I have continued with my toxin research and remain active in teaching, including codirecting a tropical plant pathology study abroad program in Costa Rica. I have had the opportunity to advise many graduate students and post-doctoral scientists and have been active in interdisciplinary graduate training programs. I recently served as co-PI for an NSF-funded ADVANCE program, working to foster advancement of women faculty through department head workshops and faculty leadership training. I am currently leading an initiative to develop a research center that brings together plant biologists, bioinformaticians, and engineers to harvest the promise of systems biology to address problems in sustainable crop production. On a national level, I have had the opportunity to serve on NSF and USDA grants panels and as panel manager for the USDA NRI plant pathology panel. I have been a member of APS since 1976 and have had the privilege of serving in diverse roles, including 10 years on the Editorial Board of Phytopathology, chair of the Publications Board, and member of APS Council. During my term on the Publications Board, we worked to strengthen the publications mission of APS and to facilitate the transition in journal publishing to open-access, online formats. Most recently, I served as a member of the APS Governance Committee that led to the restructuring of APS Council, as well as participated in the May 2013 Thought Leader workshop.

Statement of Vision for APS: I have been a member of APS for 37 years and have benefited from its many activities both as a member and a volunteer. APS is a vibrant and visionary society that serves diverse clientele and missions for a science of fundamental importance to the sustainability of our planet, yet remains poorly understood by the public. Primary to the mission of APS is the dissemination of knowledge, both of primary research on basic and applied advances in our science as well as knowledge about the impact of plant disease on agriculture, the environment, society, and history.

My volunteer service in APS was grounded in the publishing side of the society. As a nominee for vice president, I welcome the opportunity to provide leadership to continue to strengthen our publication mission, which I view as central to the future of our society. I am also excited about the opportunity to promote and enhance two other critical roles of our society: Our role in educating decision-makers and the general public and the importance of fostering interaction and professional development of our members. We are facing a time of sharply diminishing federal and state support for scientific research. We are also seeing increasing public suspicion and rejection of scientific understanding of issues critical to agriculture, from denials of climate change to fear of GMO crops. Our members, our science, and society are well served by efforts by APS and by our members to educate policy-makers and the general public about the scientific foundation of these issues, the challenges we face in ensuring a sustainable and safe food supply, and the importance of funding scientific research. We have been well served by the activities of our Public Policy Board and by our online outreach materials. I see strengthening and enhancing our outreach and educational mission to decision-makers and the public as a critical function of APS.

I am also interested in enhancing another important role of the society, that of fostering interaction and professional development of our members. As a department head, as well as coleader in a campus initiative to foster faculty development, I am frequently asked to speak on topics related to professional development for faculty and students. One lesson that I always impart is the role that APS has played in my professional advancement, from providing critical professional contacts to the many leadership opportunities that I have had. When I look back on my career, I owe much of my success to contacts and volunteer and leadership opportunities obtained through APS. To sustain a vibrant science, we need to support and promote connections and opportunities for our members and foster members’ professional advancement, which in turn brings recognition to our science and APS.
Timothy D. Murray

Professor, Department of Plant Pathology, Washington State University (WSU), Pullman, WA

Area of Specialization: Ecology, epidemiology, and control of small grain diseases, soilborne pathogens, and genetics of disease resistance.

Academic Record: B.S., 1978, University of California-Davis; M.S. and Ph.D., 1980 and 1983, WSU.

Brief Description of Professional Achievements: I discovered plant pathology in an orchard cutting fire blight from infected pear trees and working in a pest detection survey, where I experienced a wide variety of crops, pests, and diseases. These jobs gave me first-hand experience with the impact of plant diseases and instilled in me the desire to pursue a career in plant pathology. Following graduate school, I joined the faculty at WSU with responsibilities for teaching introductory plant pathology and research on small grain diseases. Training the next generation of plant pathologists has been important to me, and I’ve mentored 20 graduate students, served on the committees of 40 other graduate students, and directed seven post-doctoral scientists. Recently, I traded teaching for extension and joined the WSU Small Grains Team to improve delivery of pathology research to producers in eastern Washington. I have conducted research on Cephalosporium stripe, eyespot, speckled and pink snow molds, stem rust, soilborne wheat mosaic, soil streak mosaic, and bacterial ooze of forage grasses. My main focus has been on the genetics of disease resistance and disease-resistant varieties for control but has also included chemical control, fungicide resistance, soil microbiology, cultural management, and pathogen detection using microbiological, serological, and molecular techniques. Service has been important in my career too. As department chair (2000–2008), I was programmatically and fiscally responsible for 20 faculty members, their staff, students, post-doctoral scientists, and visitors, stationed at six locations across Washington State. I mentored six junior faculty members to tenure and promotion and five faculty members for promotion to professor and above, served on mentoring committees of two faculty members, and was outside reviewer for promotion of 16 other scientists in the United States and abroad. As graduate program coordinator (1991–2000), I was responsible for recruiting and reviewing applicants for graduate study. I served on several university and college committees, including the Provost’s Advisory on Tenure and Promotion; Academic Vision for Classroom Technology; Plant Biosciences Building Predesign and Planning; Promotion and Tenure Guideline Taskforce; Integrated Plant Science Degree; Management of Transgenic Organisms (chair); Genetics and Plant Breeding; Plant Sciences Strategic Plan (chair); and Greenhouse Advisory (chair).

Service to APS: Senior editor, Plant Disease; APS Foundation Board; Field Crop Rust Symposium Program Committee; ad hoc committee on the future education of plant pathologists; Plant Management Network Strategic Planning Committee; founding editor-in-chief, Plant Health Progress; Publications Board; Office of Electronic Communications; Host Resistance Committee; ad hoc committee on divisions; secretary-treasurer, Pacific Division; Classics Committee; Soil Microbiology and Root Disease Committee; and associate editor, Plant Disease.

Awards and Honors: APS Fellow; Washington State Crop Improvement Association O. A. Vogel Award; Sigma Xi, Washington State University; Phi Kappa Phi.

Statement of Vision for APS: Plant pathologists and students of plant pathology should be optimistic about the future of our discipline. Human population growth, pressures on environmental quality, and global climate change are causing unprecedented challenges for agriculture. We know that people will continue to eat, farmers will continue to produce crops, and plant pathogens will continue to cause disease. Thus, it’s hard to envision a successful future for agriculture anywhere in the world without plant pathology. Although I’m optimistic about our future, significant challenges to our continued success as a discipline and scientific society exist. Attracting the best and brightest students into our discipline and remaining financially viable, while providing the high-quality services members expect, top my list. Scientific innovation and continued dissemination of new knowledge are essential. APS must continue to provide forums for the exchange of information and advocate with policy-makers on behalf of the diverse interests of its members.

U.S. higher education has changed during the past 20 years, resulting in fewer departments of plant pathology or departments with plant pathology in their title. Will training for young plant pathologists decline as our discipline loses the visibility and concentration of expertise that often accompanies university reorganizations? Will this trend continue? What can we do to ensure a bright future for the science and practice of plant pathology?

In 2006, APS President Jan Leach appointed two ad hoc committees, one on the status and future of plant pathology as a profession and another on plant pathology education. These committees reached important and surprising conclusions about our future. For one, we are not training enough Ph.D. plant pathologists to meet anticipated future demands based on projected retirements. Although not good for employers, prospects for new graduates should be bright. If demand for plant pathologists exceeds supply, the job market should be strong with competitive salaries that will attract more young people to our profession.

Remaining financially viable is essential to our continued health as a professional society. The wisdom of past APS leaders has made our organization financially stable today; however, we can’t be complacent. Paradigms for publication and communication continue to change, as do member expectations. APS has adapted, adopted, and been a leader in providing new outlets for our work. Still, future changes are inevitable and exciting and will impact how APS does business. I’m optimistic that APS and its members will successfully address these new challenges, as they have in the past. If elected, I will do everything I can to help APS continue to play an essential role in supporting the professional aspirations of its members and provide the opportunities they expect.

Candidates continued on page 76

Phytopathology News 75
Candidates for Councilor-at-Large

Lindsey du Toit

Professor and Extension Specialist, Department of Plant Pathology, Washington State University, Mount Vernon, WA

Area of Specialization: Etiology, diagnosis, epidemiology, and management of vegetable diseases, particularly vegetable seed crops; vegetable seed pathology.

Academic Record: B.Sc. Honors, 1992, University of Natal, Pietermaritzburg, South Africa; M.S., 1995, University of Illinois at Urbana-Champaign (UIUC); Ph.D., 1998, UIUC.

Brief Description of Professional Achievements: While a graduate student at UIUC, I gained diagnostic experience in the Plant Clinic for five seasons, while also building a foundation in applied plant pathology research. I then worked for two years in the Plant and Insect Diagnostic Lab at Washington State University (WSU). Efforts to provide clientele with effective disease management recommendations led me to consider an applied research and extension position to help develop solutions for plant diseases. I was hired as assistant professor in the WSU Department of Plant Pathology in 2000 at the Northwestern Washington Research and Extension Center, where I established an applied research and extension program on diseases of high-value, small-seeded, vegetable-seed crops. These crops produce 50–100% of the U.S. supply and up to 50% of the world supply of seed for ~30 vegetable species. I was promoted to associate professor in 2006 and professor in 2013 and have had the privilege of working with growers, researchers, and the regional, national, and international vegetable seed industry on a diversity of fungal, bacterial, and viral diseases. I coled the Pacific Northwest Vegetable Extension Group, a tri-state, interdisciplinary collaboration of 25 vegetable specialists. My program has generated research and related support for 24 fungicide and bactericide registrations in conventional and organic vegetable and seed crops in Washington and several Oregon and federal registrations, in addition to developing integrated disease management programs. I teach a field plant pathology graduate course that facilitates direct interaction of students with growers, regulatory agents, crop inspectors, consultants, extension educators, and researchers in diverse plant vocations.

Other Professional Service: Member, Southern African Society for Plant Pathology (1991–present); member, International Society of Plant Pathology (1994–present); associate editor, *Agronomy Journal* (2009–2011); ad hoc reviewer for ~10 journals; member, Washington State Department of Agriculture Seed Program Advisory Committee (2002–present); advisor, Columbia Basin Vegetable Seed Association (2004–present); Puget Sound Seed Growers’ Association (2001–present); member, Western Washington Small Seed Advisory Committee (2001–present); leadership team, WSU Center for Sustaining Agriculture and Natural Resources (2012–2014); Organizing Committees of the 34th (chair) and 35th International Carrot Conferences; 2006 (chair) and 2011 International Spinach Conferences; 2010 Soil Fungus Conference; board member, Western Washington Horticulture Association (2000–2004 [president, 2002–2003]).

Awards and Honors: APS Syngenta Award (2013); WSU Interdisciplinary Team Excellence Award from the College of Agricultural, Human, and Natural Resources Sciences for coleading the Pacific Northwest Vegetable Extension Group (2012); APS Council Fellow (2012); WSU Kenneth J. Morrison Extension Award (2012); APS Pacific Division Early Career Award (2006); Alfred Christianson endowed professorship in vegetable seed science (2002–2005, 2006–2010, 2011–2015); first APS I. E. Melhus Graduate Student awardee (1997).

Statement of Vision for APS: I had never heard of plant pathology when I started undergraduate studies in South Africa in 1988. Microbiology seemed an appropriate major for my interests, but this required I take a plant pathology course. The plant pathology instructors provided first-hand exposure to the interface of science and people affected by plant diseases through field trips to farms, forests, and nurseries, as well as non-governmental organizations working in subsistence farming. This cross-road of science, people, and food triggered my interest in becoming a plant pathologist.

I was invited as an undergraduate student to work on a small research project, which was an intriguing (albeit blundering) first attempt at research. I also received a gift subscription to APS and recall the first issue of *Phytopathology News* I read in 1991, wondering how the topics and people therein were relevant to my career on the other side of the world. Three degrees, 22 years, and two jobs later, I am grateful for the tremendous benefits of APS membership that have helped me establish a successful applied plant pathology career in academia. Together with experience teaching a field plant pathology graduate course, this led me to accept the invitation to stand for nomination as councilor-at-large. I would be pleased to use this opportunity to utilize the diversity of talents of APS members for promoting internships and other forms of authentic exposure to plant pathology careers to recruit new students, guide current students, and provide diverse employers with opportunities for mentoring students and recruiting potential employees.

The international membership of APS has grown significantly and presents invaluable perspectives on regional and global aspects of plant pathology. As a former international member, I believe I can contribute to effective liaison between APS Council and diverse APS members. I support continued efforts of APS members to address the spectrum of fundamental to applied research, teaching, and extension needs in plant pathology in a balanced manner. Furthermore, APS serves as an invaluable conduit for communicating robust science to diverse audiences in a readily accessible manner through the dedicated service of authors and editorial board members. Publication and dissemination of high-quality science is a critical role of APS that I endeavor to support. It is a pleasure to submit my nomination to serve as an advocate for APS members globally and to advance our discipline nationally and internationally.
Mary K. Hausbeck

Professor and Extension Specialist, Department of Plant, Soil, and Microbial Sciences, Michigan State University (MSU), East Lansing, MI

Area of Specialization:
Diseases of vegetable crops, greenhouse vegetable transplants, ginseng and greenhouse floriculture crops; pathogen epidemiology and etiology; disease diagnosis; integrated management strategies; disease predictors; fungicide efficacy.

Academic Record:

Brief Description of Professional Achievements:
My professional career at MSU has been dedicated to researching and responding to problems that face Michigan growers. Purple spot disease was decimating asparagus and contributing to early decline of fields. My lab successfully tested the efficacy of TOM-CAST in predicting when weather was favorable for purple spot development. Growers have adopted the use of this forecast to protect this perennial crop, valued at $17.3 million to Michigan. In response to competition from imported asparagus, I facilitated the movement from processing to fresh market, preserving this industry’s profitability. Pickling cucumbers are worth $37.2 million to farmers and $240.7 million to the pickle industry in Michigan. When cucurbit downy mildew first threatened Michigan in 2005, I immediately initiated efficacy trials to give growers fungicide management recommendations, which are continually being updated. Since 2006, I have maintained a cucurbit downy mildew spore monitoring program to alert growers when disease is imminent in their areas.

In response to the needs of Michigan growers, I have developed and revised pest management strategic plans for five crops. I consider the graduate education of students in plant pathology a priority. Under my program, 10 Ph.D. and 22 M.S. students have received their degrees and gone on to successful careers at universities, private industry, and government agencies.

Service to APS:

Other Professional Service:

Awards and Honors:
Fellow, APS (2014); William J. Beal Outstanding Faculty Award/All University Award, MSU (2014); Meritiorious Service Specialist Award, MSU Extension (2009); APS Excellence in Extension Award (2008); IR-4 Meritorious Service Award, Michigan and the North Central Region, The IR-4 Project (2007); Distinguished Faculty Award, College of Agriculture and Natural Resources Alumni Association, MSU (2006); Alex Laurie Award for Research and Education, Society of American Florists (2004); John Hannah Award for Program Excellence to Floriculture Area of Expertise Team, Greenhouse Grower Career Development Certificate Program, MSU Extension (2002); All University Excellence in Diversity Team Award, MSU (2002); Outstanding Extension Specialist Award, Extension Specialists Association, MSU (2001); West Central Team Award for Excellence in Extension Programming for the TOM-CAST Disease Prediction Network in western Michigan, MSU Extension (2001); Master Farmer Associate Award, Michigan Vegetable Council (2001); Extension Specialist Award, Michigan Association of Extension Agents (1995).

Statement of Vision for APS:
My vision for APS is based on my passions that include solving disease problems for growers and their allied industries and training graduate students for a career in plant pathology. Ideally, I would like the average citizen to know that plant pathology contributes to their everyday health and enjoyment. Dedicated and talented APS members help to ensure that there are colorful healthy impatients flowers in the landscape, blight-free tomatoes from home gardens, pesticide-free baby food, refreshing orange juice, tasty beer, and the list can go on.

When I was a graduate student, a particular professor used to stand at the back of the room during a student’s seminar and ask the question, “So what?” APS is our collective voice in answering that question at multiple levels, ranging from elementary school students to consumers, producers, and regulatory/governmental agency officials, etc. Embracing the latest social media form while supporting traditional communication outlets can be a difficult balance to strike but will need to be a key element of APS in the future. How else to showcase all of the good things that APS members accomplish each day? There are many success stories to be shared regarding pathogen problems that have been solved and disease management strategies that work. While plant pathology continues to advance with new tools and paradigms, APS is uniquely positioned to communicate these advances in a manner that is meaningful even to those who lack a background in science. While connecting to those outside of our discipline is increasingly important, APS must also continue to link plant pathologists across regional, national, and international levels. Pathogens do not see borders as barriers but plant pathologists may need the help of APS to make the needed/desired connections to pathologists across the country and/or across the globe. Also, the vision for APS must include providing resources and opportunities for graduate students to assist them in identifying a successful career path. I’m familiar with training graduate students in the area of field/applied plant pathology and recognize the strong demand for graduate students with that training to fill today’s job vacancies. Continued discussions and creative partnerships/linkages between APS and industry (and other potential employers) will ensure that the next generation of students has the skill set needed for a satisfying career in plant pathology.

Phytopathology News 77
People

Student Degrees

Kathleen M. Burchhardt recently completed the requirements for her Ph.D. degree in plant pathology at North Carolina State University under the direction of Marc A. Cubeta. Her research focused on examining the genetic diversity, population structure, and reproductive biology of the blueberry fungal pathogen *Monilinia vaccinii-corymbosi*. She received the USDA National Needs Fellowship, PEO Scholar Award, and College of Agriculture and Life Sciences Outstanding Graduate Teaching Award. Burchhardt also received travel awards from The Plant Pathology Society of North Carolina, the Mycological Society of America, The American Phytopathological Society, and the Genetics Society of America. She presented a seminar on her research in the Department of Plant Pathology and Plant-Microbe Biology at Cornell University-Geneva as part of the annual inter-institutional graduate student exchange program between Cornell and North Carolina State Universities. She is currently employed as a scientist II/plant pathologist in the MiDAS research group at Bayer CropScience Innovation Center in Morrisville, NC.

Alexander I. Putman completed a Ph.D degree in the Department of Plant Pathology at North Carolina State University (NCSU) in spring 2014. His dissertation, entitled “Worldwide population biology of *Sclerotinia homoeocarpa* and mating systems of the pathogen and closely related fungi,” was completed under the direction of Ignazio Carbone and Lane Tredway. His research focused on the fungal pathogen that causes dollar spot, the most important and widespread disease of turfgrasses worldwide. He employed genomic and genotypic techniques on a global catalog of *S. homoeocarpa* isolates to resolve their mating systems and provide valuable insights into the evolution and spread of this pathogen. Putman’s research was funded by the Center for Turfgrass Science at NCSU and a GAANN fellowship in biotechnology from the NCSU Graduate School.

Awards

James Cook, Washington State University (WSU), was honored by the Washington State Senate for his distinguished research career as a plant pathologist. Senate Resolution 8677, sponsored by Senator Jim Hargrove, outlines Cook’s multifaceted 40-year career as chief scientist with USDA ARS and WSU, where he was honored with a Lifetime Achievement Award. Cook spent his career pursuing cutting-edge research in plant pathology and crop and soil sciences, revolutionizing how agriculture approaches crop productivity and disease management. Most recently, Cook headed a study to better understand root rot diseases that threaten Douglas fir, which is a vital economic and ecological resource in Washington. Commissioner of Public Lands Peter Goldmark requested the study from the National Academy of Sciences (NAS) because very little is understood about laminated root rot. The disease can reduce timber yield in forests by 5–15%, which translates to more than $10 million in losses over a two-year period. In addition to some 200 peer-reviewed journal papers and book chapters, Cook has coauthored two books: *Biological Control of Plant Pathogens and Wheat Health Management*. In 1988, he led the first field study of a genetically modified microorganism for root disease control on wheat in the Pacific Northwest. Among many other honors Cook has received over the course of his career, he was elected to NAS and continues to support the agricultural sciences through this organization. Cook is most admired for his commitment in sharing scientific knowledge with everyone—students, farmers, policymakers, and the general public.

Jaacov (Yaacov) Katan from the Department of Plant Pathology and Microbiology, Hebrew University of Jerusalem, Israel, was awarded the Israel Prize in Agriculture and Environmental Sciences for his achievements in the field of soilborne plant pathogens research and especially for leading the team who developed the solarization concept. This is the highest award that the State of Israel awards to its scientists and will be given to Katan by the president of Israel in May. Katan is a fellow of APS, the American Association for the Advancement of Science, and the International Society of Plant Pathology and received the Jakob Eriksson Prize in Plant Pathology in 2003. He is past president and honorary president of the Israeli Phytopathological Society.

In Memory

John Artie Browning passed away on November 3, 2013, in Lacey, WA, at the age of 90, following a stroke. He was born in Kosse, TX, in 1923 to John A. and Etta Ware Browning. He was raised on a dairy farm in east Texas and graduated from Gladewater High School in 1941. While attending Texas A&M University (TAMU), he enlisted in the Navy and was assigned to the USS Saratoga as a communications officer in 1944.

After the war, Artie returned to college. He married Arra B. White in 1946. Arra was the love of his life, and they celebrated their 67th wedding anniversary on March 2. Artie completed a B.S. degree in biology at Baylor University in 1947 and began his graduate studies at Cornell University (CU) the next year. In 1953, he received a Ph.D. degree in plant pathology from CU and accepted a position on the faculty of Iowa State University (ISU) in Ames. He spent 28 years at ISU teaching and conducting research that focused on managing diseases of cereal crops, primarily oat rust. His research at ISU involved breeding disease-resistant multiline cultivars of oats with his colleagues Ken Frey and Marr Simons. Using an approach that emphasized the importance of genetic diversity as a natural disease retardant, they created rust-resistant varieties that perform well agriculturally.

Artie left ISU in 1981 to accept a position as department head at TAMU, where he reorganized the Plant Science Department and established a new Department of Plant Pathology and Microbiology in 1985. He retired from TAMU in 1990 but took his professor emeritus status seriously and continued to be professionally active. He was a prolific writer throughout his career and authored or coauthored numerous publications, including a book, 22 book chapters, over 40 papers in research journals, and more than 60 less technical papers.

He gave frequent lectures and seminars on plant pathology and related topics. Although
focused primarily on his research, he was also interested in the application of science to public policy and education. This led to his participation in a number of national and international panels and committees on integrated pest management and other subjects. He also received a patent for an instrument he invented to collect data for his research at ISU.

Enjoying the travel opportunities that his career provided, Artie and Arra made many memorable trips around the United States and abroad. They took the family to Bogota, Colombia, in 1963, where Artie spent 18 months working with the Rockefeller Foundation. While there, he continued his research on oat diseases. He later made several return visits to Colombia at the request of the Colombian Coffee Federation after they had successfully applied his methodology of multiline breeding to create a variety of coffee that was resistant to a disease that had wiped out coffee production in other parts of the world.

Artie carried on an extended collaboration with Isaak Wahl at Tel Aviv University and made several trips to Israel. This included an 18-month stay as a Fulbright Scholar in 1990–1991. Wild oats are indigenous to Israel and have natural disease resistance. His Israeli research involved incorporating some of the genetic diversity and natural resistance of wild oats into cultivated oats. This research led to the development of additional disease-resistant oat cultivars.

Artie was active in a number of professional organizations, especially The American Phytopathology Society (APS). He became an APS Fellow in 1980 and served as president during 1981–1982. He continued to be active in APS after retirement and advocated for the creation of Doctor of Plant Health educational programs. The first of these was established at the University of Florida in 1999 and the second at the University of Nebraska in 2009. In 2011, he and Arra donated funds to establish the APS Foundation Plant Medicine and Health Travel Fund to assist graduate students in attending professional meetings and conferences.

After returning from Israel in 1991, Artie and Arra moved to Olympia, WA, to be closer to their children and grandchildren. They have lived at the Panorama retirement community in Lacey since 2002. They were significant fundraisers and contributors to the fund that enabled the Panorama Foundation to incorporate energy-efficient features in its new auditorium.

In addition to his professional pursuits, Artie was an avid and expert photographer who rarely went anywhere without a camera. He had a lifelong love of gardening and was a master gardener. He also enjoyed camping, canoeing, kayaking, hiking, and bicycling. His favorite destinations included the Boundary Waters in Minnesota, Big Bend in Texas, and the San Juan Islands and Olympic Peninsula in Washington.

As a member of the United Churches of Olympia, Artie was fascinated by the relationship between science and religion. He organized a popular Sunday school class on science and religion at the church. His other intellectual interests included seeking solutions to the intractable problems of overpopulation and world hunger. He and Arra also shared a passion for evolution that resulted in taking the entire family on a trip to the Galapagos Islands in 2005.

Artie is survived by his wife Arra and their three children: Glenn (wife Carol) in Sequim, Gayle in Seattle, and John (wife Elizabeth) in Olympia. Artie and Arra have four grandchildren: Ar-rta (partner Mathew), Paul (partner Bob), Jonathan, and Aviva. He is also survived by his beloved sister Gladys Evelyn Browning Best of Abilene, TX.

At his request, his ashes will be buried next to his grandparents at a small, country cemetery in Bald Prairie, TX, next spring. In lieu of flowers, the family requests that donations be made to the Nature Conservancy (www.nature.org) in his memory.

Submitted and written by Glenn Browning, John Browning, and the Browning family.

Donald C. Erwin, professor emeritus in the Department of Plant Pathology and Microbiology, University of California (UC)-Riverside, passed away on February 22, 2014, at the age of 93. Don was born in Concord, NE, and grew up on a small farm. He attended Wayne State Teachers College, NE, from 1939 to 1940 and served in the U.S. Army Medical Department as a surgical technician in Wales, Great Britain, from 1942 to 1946. He then continued his education at the University of Nebraska-Lincoln, where he received a B.S. degree in agronomy in 1949 and an M.S. degree in plant pathology in 1950. There he also met his future wife Veora Endres. During his studies, he identified the causal agent of a root rot of safflower caused by Phytophthora drechsleri, and this first exposure to the genus Phytophthora captured his interest for the remainder of his long career. In 1953, he earned a Ph.D. degree in plant pathology from UC-Davis.

Don was hired the same year as a junior plant pathologist at the Citrus Experiment Station in Riverside, CA, that in 1954 opened as the College of Letters and Science, and in 1959, became a general campus of UC. In 1959, Don was awarded a Guggenheim Fellowship to study the ecology of Phytophthora at the Soil Microbiology Laboratory, Canadian Department of Agriculture in Ottawa, Canada, during a sabbatical leave. In 1966, he was promoted to professor of plant pathology at UC-Riverside. From 1977 to 1980 he was chair of the Department of Plant Pathology. He retired in 1992 as professor emeritus.

During his long career at UC-Riverside, Don conducted research on the causes and control of diseases of alfalfa, flax, garbanzo beans, and cotton and the biology of species of Phytophthora. In 1954, he described a previously unknown root disease of alfalfa, caused by a Phytophthora species that is now known as P. medicaginis. In 1966, he published the first report of resistance to P. medicaginis in the alfalfa cultivar Lahontan. Subsequently, in cooperation with W. F. Lehman, resistance to P. medicaginis was incorporated in the alfalfa cultivars Salton, UC Cargo, and CUF101. Between 1982 and 1987, he developed two alfalfa germplasms with high resistance to P. medicaginis and one resistant to Stagonospora medicaginis, and in 1993, he developed six germplasms with high resistance to Verticillium albo-atrum. In the Imperial Valley of California, Dr. Erwin demonstrated that a severe root disease of alfalfa (commonly called “scald”) that could result in total crop loss in the summer was due to excessive flood irrigation, but only when soil temperatures were extremely high. He demonstrated that the disease could be controlled by careful summer irrigation management. A severe root disease of flax was shown to be due to the interaction of the sugar beet curly top virus and Rhizoctonia solani. In the biology of the genus Phytophthora, Don and his research group contributed to a better understanding of the nutritional requirements for growth and of germination of the sexual oospores. Research on cotton in cooperation with Cotton Incorporated demonstrated the efficacy of systemic fungicides to control Verticillium wilt in the San Joaquin Valley caused by Verticillium dahliae. This resulted in much scientific information, however, the use of the systemic fungicide benomyl did not prove to be cost effective.

People continued on page 80
Don published 115 technical papers, including three invitational book chapters and 43 semi-technical publications on diseases of field crops in California. In 1981, he chaired the organizational committee for the first world conference on the genus Phytophthora at UC-Riverside that attracted 300 participants from 21 nations. He was coeditor with S. Bartnicki-Garcia and P. H. Tsao of the book Phytophthora, its Biology, Taxonomy, Ecology and Pathology that was published in 1983 and summarized the invited presentations of this meeting. Don Erwin was coauthor with O. K. Ribeiro of the comprehensive book Phytophthora Diseases Worldwide, published in 1996.

Don directed 12 Ph.D. students and one M.S. student. He served on the steering committee of the interdepartmental master’s degree program on pest management (weed control, plant pathology, nematology, and entomology) from 1975 to 1986, under which several students received M.S. degrees in pest management under his direction. He participated in team-taught advanced plant pathology courses and organized the course Diagnosis of Plant Diseases. He was an honorary member of the North American Alfalfa Improvement Conference for contributions of alfalfa germplasms with resistance to diseases and a Fellow of APS. He received the Lifetime Achievement Award of the APS Pacific Division.

Don Erwin was a humble, caring man with a gentle kindness who was always concerned about his students and their welfare. It was this quality that brought out the best in everybody who had the privilege to work under him. Students and colleagues could turn to him for any problem, scientific or personal. He was always encouraging his students to reach beyond what was already known and seek unique perspectives when looking at a problem. At every APS meeting, his former lab members would recall fond memories of the time they spent in his lab. Don was a life-long plant pathologist who never gave up his interests in plant diseases, even after retirement. This is well exemplified by his book Phytophthora Diseases Worldwide, a true masterpiece that took several years of his retirement to write. Wherever he journeyed, his keen eye was always looking at plants, and if they showed any kind of malady, he sought to identify the cause for it. He will be sadly missed by plant pathologists worldwide, but his legacy will live on. Don is survived by his wife Veora, his children Myriam and Daniel, and five grandchildren.

Those who had the opportunity to meet David Strider will never forget his zeal for life, his ability to inspire others, and his dedication to family and the profession of plant pathology. David, known to many as Dr. Strider or Dave, passed away on December 20, 2012, in The Villages, Florida, after complications with a stroke. He is sincerely missed by those who knew him.

Strider was born in Salisbury, NC. He graduated from Hendersonville High School in Hendersonville, NC, in 1948, immediately after which he served in the U.S. Air Force during the Korean War. After his return in 1954, he married Theresa, his wife of many years. He received his B.S. degree in horticultural science from North Carolina State University (NCSU) in 1956 and subsequently his M.S. degree in horticultural science in 1957 and his Ph.D. degree in plant pathology in 1959. He began a productive career of more than 30 years in the Department of Plant Pathology with an appointment to the NCSU Mountain Horticultural Crops Research and Extension Center, Mills River, in 1960, where he studied vegetable diseases. In 1969, he led the NCSU mission to Peru as head of the National Bean Program-La Molina in Lima. In 1971, he returned to NCSU as a professor in the department, responsible for floriculture diseases. In 1987, he became the coordinator of international visitors for the College of Agriculture and Life Sciences as he continued his departmental duties. From 1993 to 1994, Strider took on additional responsibilities, serving as extension specialist for apple diseases before his retirement.

His achievements as a plant pathologist specializing in vegetable and floriculture diseases were substantial. By 1960, the trellised tomato industry in western North Carolina was threatened by bacterial wilt caused by Corynebacterium michiganense. Strider evaluated field resistance; tested chemical controls, including seed treatments; and investigated pathogen virulence and survival. His extensive research on bacterial wilt led to publication of a widely cited monograph. He also studied fungal diseases of vegetables, such as Cladosporium cucumerinum in cucumber, where he investigated cell-wall-degrading enzymes and the effect of environmental conditions on growth of the pathogen.

Perhaps his greatest contributions came in ornamental pathology. He was the first to observe that Ralstonia solanacearum caused Southern bacterial wilt in florist geranium and that geranium isolates of the pathogen were also pathogenic on marigold, tomato, and zinnia but not tobacco. He and his students reported the effect of leaf moisture, wounding, and inoculum density on infection of Philodendron by Erwinia chrysanthemi and then showed the role that nutrition played in disease development. He screened Rieger begonia cultivars for susceptibility to bacterial blight caused by Xanthomonas begoniae. He tested nematicides for control of Aphelenchoides fragariae in African violets and Rieger begonias. Strider evaluated resistance in garden chrysanthemum to bacterial leaf spot caused by Pseudomonas cichorii.

Fusarium wilt in chrysanthemum re-emerged as a significant disease in the early1980s when clean stock programs were not followed. Strider found cultivars resistant to F. oxysporum f. sp. chrysanthemi and F. oxysporum f. sp. trachecphilum and tested fungicides for control of these important wilt pathogens. When exacum became a popular potted plant, Strider and his students found that Botrytis blight could quickly limit floriculture production. Isolates of B. cinerea from other hosts such as geranium, tomato, and zinnia also caused blight on exacum. As in other crops, benomyl-resistant strains of B. cinerea were found, so other fungicides were tested and proven effective. His crowning achievement came with the publication of a widely cited two-volume treatise, Diseases of Floral Crops, that he edited and authored many chapters.

Strider enjoyed sports and gardening. During his research and teaching days at NCSU, he also put his horticultural and pathology talents to work on weekends as he landscaped yards and trimmed trees with graduate student assistance. This provided hands-on practical experience in a fun environment for a number of students.

In retirement, Strider continued to live a busy and productive life, enjoying tennis, golf, and painting while providing roses and home-grown tomatoes to his community.

Prepared by Jane Trolinger, Syngenta Flowers, Mike Benson, and Bill Cline, North Carolina State University, in cooperation with Frank Strider.
Assistant or Associate Professor—Extension

The University of Kentucky (UK) is seeking a tenure-track, full-time faculty appointee to develop a comprehensive extension and applied research program in plant pathology. The position will be located at the UK Research and Education Center (UKREC) in Princeton, KY. UKREC is headquarters to more than 50 faculty and staff, representing eight departments in the UK College of Agriculture, Food, and Environment. UKREC is also home to one of the department’s two Plant Disease Diagnostic Laboratories (PDDL). State-wide commodity responsibility will be grain crops, primarily corn, wheat, and soybean. Expertise in one or more of these commodity areas is desirable, but not essential. As part of a team of extension plant pathologists, this individual will develop/implement educational/outreach programs pertaining to grain crop diseases, provide expertise/technical assistance on disease problems, seek funding and conduct problem-solving research, provide primary oversight of the Princeton PDDL and diagnostician, and cooperate in multidisciplinary grain crop teams and with relevant commodity specialists. A Ph.D. degree in plant pathology or related discipline, excellent written and oral communication skills, facility in the use of common computer technologies and social media, and a passion for the land-grant mission of UK are necessary. Experience in writing/managing grants is desirable, but not essential. Send (preferably as pdf): CV, transcripts, sample publications, brief statement of extension philosophy, and any other relevant professional accomplishments, as well as the names, addresses (including e-mail), and phone numbers of at least three professional references (no letters should be requested at this time). Application deadline is June 13, 2014. Position is open until filled.

Production Manager

Washington State University (WSU) in Prosser, WA, is seeking a production manager for the Clean Plant Center Northwest (CPCNW). This is an opportunity to be part of the management team responsible for the nationally recognized program that distributes virus-tested fruit trees, grapevines, and hop plants. This person is the primary liaison between CPCNW and commercial growers, nurseries, and researchers. The production manager will handle the production of clean plant material, order plants, monitor the plant nursery, and ensure that all plants meet quality standards. The production manager will also interact with commercial growers, universities, and industry partners to ensure the program meets the needs of the industry and continues to be a national leader in clean plant production. The production manager will also be responsible for maintaining a high level of customer service and ensuring that the program meets all regulatory requirements.

Assistant or Associate Professor—Extension

The University of Kentucky (UK) is seeking a tenure-track, full-time faculty appointee to develop a comprehensive extension and applied research program in plant pathology. The position will be located at the UK Research and Education Center (UKREC) in Princeton, KY. UKREC is headquarters to more than 50 faculty and staff, representing eight departments in the UK College of Agriculture, Food, and Environment. UKREC is also home to one of the department’s two Plant Disease Diagnostic Laboratories (PDDL). State-wide commodity responsibility will be grain crops, primarily corn, wheat, and soybean. Expertise in one or more of these commodity areas is desirable, but not essential. As part of a team of extension plant pathologists, this individual will develop/implement educational/outreach programs pertaining to grain crop diseases, provide expertise/technical assistance on disease problems, seek funding and conduct problem-solving research, provide primary oversight of the Princeton PDDL and diagnostician, and cooperate in multidisciplinary grain crop teams and with relevant commodity specialists. A Ph.D. degree in plant pathology or related discipline, excellent written and oral communication skills, facility in the use of common computer technologies and social media, and a passion for the land-grant mission of UK are necessary. Experience in writing/managing grants is desirable, but not essential. Send (preferably as pdf): CV, transcripts, sample publications, brief statement of extension philosophy, and any other relevant professional accomplishments, as well as the names, addresses (including e-mail), and phone numbers of at least three professional references (no letters should be requested at this time). Application deadline is June 13, 2014. Position is open until filled.

Production Manager

Washington State University (WSU) in Prosser, WA, is seeking a production manager for the Clean Plant Center Northwest (CPCNW). This is an opportunity to be part of the management team responsible for the nationally recognized program that distributes virus-tested fruit trees, grapevines, and hop plants. This person is the primary liaison between CPCNW and commercial growers, nurseries, and researchers. The production manager will handle the production of clean plant material, order plants, monitor the plant nursery, and ensure that all plants meet quality standards. The production manager will also interact with commercial growers, universities, and industry partners to ensure the program meets the needs of the industry and continues to be a national leader in clean plant production. The production manager will also be responsible for maintaining a high level of customer service and ensuring that the program meets all regulatory requirements.

Assistant or Associate Professor—Extension

The University of Kentucky (UK) is seeking a tenure-track, full-time faculty appointee to develop a comprehensive extension and applied research program in plant pathology. The position will be located at the UK Research and Education Center (UKREC) in Princeton, KY. UKREC is headquarters to more than 50 faculty and staff, representing eight departments in the UK College of Agriculture, Food, and Environment. UKREC is also home to one of the department’s two Plant Disease Diagnostic Laboratories (PDDL). State-wide commodity responsibility will be grain crops, primarily corn, wheat, and soybean. Expertise in one or more of these commodity areas is desirable, but not essential. As part of a team of extension plant pathologists, this individual will develop/implement educational/outreach programs pertaining to grain crop diseases, provide expertise/technical assistance on disease problems, seek funding and conduct problem-solving research, provide primary oversight of the Princeton PDDL and diagnostician, and cooperate in multidisciplinary grain crop teams and with relevant commodity specialists. A Ph.D. degree in plant pathology or related discipline, excellent written and oral communication skills, facility in the use of common computer technologies and social media, and a passion for the land-grant mission of UK are necessary. Experience in writing/managing grants is desirable, but not essential. Send (preferably as pdf): CV, transcripts, sample publications, brief statement of extension philosophy, and any other relevant professional accomplishments, as well as the names, addresses (including e-mail), and phone numbers of at least three professional references (no letters should be requested at this time). Application deadline is June 13, 2014. Position is open until filled.

Production Manager

Washington State University (WSU) in Prosser, WA, is seeking a production manager for the Clean Plant Center Northwest (CPCNW). This is an opportunity to be part of the management team responsible for the nationally recognized program that distributes virus-tested fruit trees, grapevines, and hop plants. This person is the primary liaison between CPCNW and commercial growers, nurseries, and researchers. The production manager will handle the production of clean plant material, order plants, monitor the plant nursery, and ensure that all plants meet quality standards. The production manager will also interact with commercial growers, universities, and industry partners to ensure the program meets the needs of the industry and continues to be a national leader in clean plant production. The production manager will also be responsible for maintaining a high level of customer service and ensuring that the program meets all regulatory requirements.

Assistant or Associate Professor—Extension

The University of Kentucky (UK) is seeking a tenure-track, full-time faculty appointee to develop a comprehensive extension and applied research program in plant pathology. The position will be located at the UK Research and Education Center (UKREC) in Princeton, KY. UKREC is headquarters to more than 50 faculty and staff, representing eight departments in the UK College of Agriculture, Food, and Environment. UKREC is also home to one of the department’s two Plant Disease Diagnostic Laboratories (PDDL). State-wide commodity responsibility will be grain crops, primarily corn, wheat, and soybean. Expertise in one or more of these commodity areas is desirable, but not essential. As part of a team of extension plant pathologists, this individual will develop/implement educational/outreach programs pertaining to grain crop diseases, provide expertise/technical assistance on disease problems, seek funding and conduct problem-solving research, provide primary oversight of the Princeton PDDL and diagnostician, and cooperate in multidisciplinary grain crop teams and with relevant commodity specialists. A Ph.D. degree in plant pathology or related discipline, excellent written and oral communication skills, facility in the use of common computer technologies and social media, and a passion for the land-grant mission of UK are necessary. Experience in writing/managing grants is desirable, but not essential. Send (preferably as pdf): CV, transcripts, sample publications, brief statement of extension philosophy, and any other relevant professional accomplishments, as well as the names, addresses (including e-mail), and phone numbers of at least three professional references (no letters should be requested at this time). Application deadline is June 13, 2014. Position is open until filled.

Production Manager

Washington State University (WSU) in Prosser, WA, is seeking a production manager for the Clean Plant Center Northwest (CPCNW). This is an opportunity to be part of the management team responsible for the nationally recognized program that distributes virus-tested fruit trees, grapevines, and hop plants. This person is the primary liaison between CPCNW and commercial growers, nurseries, and researchers. The production manager will handle the production of clean plant material, order plants, monitor the plant nursery, and ensure that all plants meet quality standards. The production manager will also interact with commercial growers, universities, and industry partners to ensure the program meets the needs of the industry and continues to be a national leader in clean plant production. The production manager will also be responsible for maintaining a high level of customer service and ensuring that the program meets all regulatory requirements.
The manager is responsible for the care/production of containerized plants and will directly supervise staff responsible for maintaining plant collections vital to the success of U.S. agriculture. Requirements include a bachelor’s degree in a relevant field and four years of progressively responsible experience in a field related to the functional managerial area which has included at least one year of supervisory experience. Any combination of relevant education and experience may be substituted for the educational requirement on a year-for-year basis. Additional requirements: Demonstrated excellent communication skills to deal with clientele and project team; experience in direct supervision of staff; ability and willingness to travel; must have or be able to obtain at the time of hire a valid unrestricted driver’s license. For a complete description of the position and requirements, and to apply, visit www.wsujobs.com. Screening began on April 15, 2014, and continue until the position is filled.

Forest Pathologist
Warnell School of Forestry and Natural Resources at the University of Georgia (UGA) has an opening for an assistant professor-forest pathologist. This is a 12-month, tenure-track, 65% research/35% teaching appointment offered at the rank of assistant professor. The successful candidate will be expected to develop an active research program based on extramural funding. Individuals with experience in fungal pathogens, introduced pathogens, genomic and genetic approaches, and field diagnosis and management of forest diseases are especially encouraged to apply.

The successful candidate will be expected to teach dendrology and core teach forest health and protection courses at the undergraduate level and develop a graduate-level course in their area of expertise. Applicants must have a Ph.D. degree; at least one degree in forestry, natural resources, or a related field; and doctoral or post-doctoral work in forest pathology or plant pathology. Evidence of research productivity and the potential to attract external research funding is required. The person must also demonstrate an ability and willingness to teach undergraduate and graduate courses and be able to successfully mentor students. To apply, submit a single PDF file, including a cover letter, CV, statement of teaching/research interests, unofficial transcripts of all college-level work, copies of up to three recent publications, and contact information for three references. The starting date is negotiable, but August 1, 2014, is preferred. Send applications electronically as a single PDF file to Robert Teskey, Chair, Forest Pathology Search Committee, Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602; rteskey@uga.edu.

Here are just a few of the headlines you missed this month from the APS Twitter feed.

- Don’t miss the @USAScienceFest 26-27 April 2014 and check out the @plantdisease booth http://www.usasciencefestival.org
- Plant Pathology: Taking you further than you ever imagined: http://youtu.be/mzTE3StOHlQ
- Congratulations to the 2014 APS Awardees - recognized for their significant contributions to #plant #pathology http://bit.ly/1kqIL8b
- Mutant wheat fungus alarms food experts http://bit.ly/1e7VD00
- Looking to Wheat’s Wild Ancestors to Combat an Evolving Threat http://1.usa.gov/1e9A6nU
- UGA research helps prevent scab disease on peach crop http://bit.ly/1h8NeZZ
- Peanut disease control begins with field history and rotation http://bit.ly/1mVgV11
- First peanut genome sequenced http://bit.ly/1fN3zil

Follow @plantdisease (almost 3,000 people do!) for the latest and greatest plant disease news as it happens!

Important APS Dates to Remember

May 2014
- 14 APS-CPS Joint Meeting advanced registration ends
- 16 Nominations for APS Outstanding Volunteer Award due
- 30 Voting closes for 2014 APS election

June 2014
- 27 Applications due for PPB Early Career Internship in Public Policy

July 2014
- 1 Entries for 2014 Art in Phytopathology contest due
- 8 APS-CPS Joint Meeting regular registration ends
Calendar of Events

APS Sponsored Events

<table>
<thead>
<tr>
<th>Month</th>
<th>Event Details</th>
<th>Location</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 2014</td>
<td>North Central Division Meeting.</td>
<td>Madison, WI</td>
<td>www.apsnet.org/members/divisions/nc</td>
</tr>
<tr>
<td></td>
<td>Pacific Division Meeting.</td>
<td>Bozeman, MT</td>
<td>www.apsnet.org/members/divisions/pac</td>
</tr>
<tr>
<td>August 2014</td>
<td>APS Annual Meeting. (Held jointly with the Canadian Phytopathological Society.)</td>
<td>Minneapolis, MN</td>
<td></td>
</tr>
<tr>
<td>August 2015</td>
<td>APS Annual Meeting. (New! Date and Location)</td>
<td>Pasadena, CA</td>
<td></td>
</tr>
<tr>
<td>July 2016</td>
<td>APS Annual Meeting.</td>
<td>Tampa, FL.</td>
<td></td>
</tr>
</tbody>
</table>

Other Upcoming Events

May 2014

June 2014
- 8-13 The 13th International Conference on Plant-Pathogenic Bacteria. Shanghai, China. www.icppb2014.org
- 15-21 Challenges and Opportunities in Tree Rust Research: Climate Change, Genomics and Sustainable Management. Fort Collins, CO. richard.hamelin@ubc.ca
- 16-19 7th ISTA Seed Health Committee Seed Health Symposium. Edinburgh, Scotland. www.seedtest.org

July 2014
- 6-10 XVI IS-PMPI Congress. Rhodes Island, Greece. www.mpmi2014rhodes-hellas.gr
- 8-9 New Phytologist Next Generation Scientists. Norwich, United Kingdom. www.newphytologist.org/nextgensci

August 2014
- 8-9 North American Late Blight Symposium. Minneapolis, MN. http://oomyceteworld.net/lbs/main.html

October 2014

March 2015