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ABSTRACT

Madden, L. V., and Hughes, G. 1994. BBD—Computer software for fitting the beta-binomial
distribution to disease incidence data. Plant Dis. 78:536-540.

A software program for DOS-based personal computers was developed to fit the beta-binomial
distribution to the frequency of incidence of disease. The beta-binomial is a discrete distribution,
which is appropriate for describing aggregated or clustered binary data such as incidence.
Variance-ratio and C(a) tests are performed to determine if there is evidence that incidence
is aggregated. The program then calculates distribution parameters and their standard errors
using a maximum likelihood procedure, determines the expected values of the distribution,
and calculates a chi-square goodness-of-fit test. For comparison purposes, the program fits
the binomial distribution to the same data. The software and a detailed user’s manual are

available free from either author.

The analysis of spatial patterns of
plant diseases is an important component
of epidemiology (1,4,11). Information on
disease patterns can be used to aid in
the understanding of the spatio-temporal
disease dynamics, transform data to meet
statistical assumptions for assessing
treatment effects, and develop sampling
protocols that result in precise estimates
of mean disease intensity (1). There are
many approaches for characterizing
spatial patterns, depending on the type
of data collected and knowledge of the
location of where observations were
made. A very popular procedure is fitting
discrete probability distributions to the
data and quantifying aggregation by the
realized values of the parameters of the
distributions (4). For instance, the
Poisson and negative binomial distribu-
tions can be fitted to the counts of lesions
per sampling unit. These two distribu-
tions are appropriate when there is,
effectively, no upper limit to the counts
in the sampling units or when the counts
are substantially less than the limit. If
certain assumptions are met (11), a good
fit (based on x? goodness-of-fit test) of
the negative binomial is an indication of
a clustered (or aggregated) pattern, and
the degree of aggregation is assessed by
the estimated parameter k of the distri-
bution. A good fit by the Poisson distri-
bution in this scenario would indicate a
random pattern, if statistical assump-
tions are met (1).
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Unlike the situation for unlimited
counts, Hughes and Madden (7,8)
recently pointed out that the use of the
Poisson, negative binomial, and related
distributions is generally inappropriate
for analyzing data on disease incidence
(proportion of plants or leaves diseased).
Because of the binary nature of incidence
(a plant is diseased or not), it can be
misleading to fit distributions that are
based on counts (such as the Poission
and negative binomial). For a random
pattern of disease incidence (for example,
diseased plants per sampling unit) the
appropriate probability distribution is
the binomial. For a clustered pattern of
incidence, the beta-binomial distribution
is an appropriate alternative to the
binomial (6,8,17,22). This distribution
has three terms: #n = the number of plants
(or plant units, e.g., leaves) in a sampling
unit; p = the probability of a plant being
diseased; and 6 = the index of aggre-
gation. The latter two parameters are
estimated from data. As 6 approaches
0, the beta-binomial reduces to the
binomial distribution. An alternative
parameterization uses @« = p/6 and 8 =
(1 — p)/6, but p and 6 have better sta-
tistical estimation properties (19). The
beta-binomial distribution is entirely
consistent with the Taylor empirical
power law (1) as modified by Hughes
and Madden for incidence data (7).

A computer program by Gates and
Ethridge (3) is used by many plant
pathologists to fit the Poisson and
negative binomial distributions to data.
A new version of the program, called
DISCRETE, is now available for per-
sonal computers (2). Although the
binomial distribution can be fitted with

this program, it is not possible to fit the
beta-binomial. Smith (19) published a
FORTRAN subroutine to estimate beta-
binomial parameters, using maximum
likelihood, which we incorporated into
amainframe program to estimate param-
eters for virus disease data sets (8). The
mainframe program does not allow user
control without revising the actual
FORTRAN source code. Additionally,
a program for calculating the expected
values of the frequencies was not avail-
able, which is a nontrivial matter with
the beta-binomial. Originally, we wrote
a MINITAB (13) command file (macro)
to calculate the expected values by
inputting n and estimates of 6 and p,
as determined with the Smith algorithim.
A x* goodness-of-fit test was done in a
separate operation with MINITAB after
entering the observed frequencies.

To allow more individuals to use the
beta-binomial distribution, and to com-
bine parameter estimation, calculation of
expected values, and the x> goodness-
of-fit test, we wrote a computer program,
called BBD, for use on microcomputers.
The purpose of this article is to describe
the input and output of the program,
present the control options available to
the user, and present examples of the use
of the program.

Computer program. The program is
written in Microsoft FORTRAN and
compiled by version 5.1 of Microsoft’s
Professional Development System (One
Microsoft Way, Redmond, WA 98052-
6399). The program requires DOS 3.2
or higher. Extended memory and a math
coprocessor are not required, but a co-
processor is used if present. The program
will run with 8088/80286 and higher
MICroprocessors.

Moment estimates of p and 6, calcu-
lated using the procedure of Kleinman
(9), are used as initial values in the
iterative Smith (19) algorithm. Maxi-
mum likelihood estimates (MLEs) of the
parameters and standard errors of the
estimates are calculated using a damped
Newton-Raphson technique. Expected
values for the beta-binomial are deter-
mined by following the method given by
Skellam (18). When possible (see below),
a x° statistic is calculated for goodness-
of-fit between the observed and expected
frequencies, and the significance level of



the x? value is calculated using the
method in the Gates program (2).

For comparison purposes, BBD
calculates the expected values of the
binomial distribution (with the same
estimated p) using a procedure from
Press et al (15). A x* goodness-of-fit test
for the binomial distribution also is done.
This allows the user to compare distribu-
tions without running two programs
(BBD and DISCRETE [2)).

Two variance-ratio tests are calculated
prior to calculating MLEs of the param-
eters. These tests allow one to determine
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Fig. 1. Example input incidence data sets for
use with the BBD program. Top two sets:
frequency of diseased plants or leaves is
recorded (e.g., 43 sampling units with 0
diseased leaves in the first set). There are 16
records of data (n = 25) in the first set, and
eight records (n = 9) in the second. The “1”
on the control records indicates that frequency
format is used. Bottom set: data on individual
sampling units are recorded. There are 25
units, and »n varied among them (negative
value for n given on the control record).

if there is sufficient evidence to reject the
null hypothesis of a binomial distribu-
tion, that is, that there is a random pattern.
The calculated (observed) variance of
diseased plants per sampling unit (see,
for example, equation 21.5.1 in Snedecor
and Cochran [20]) is divided by the
theoretical variance for a binomial
distribution [np(1 — p)] to produce an
index of dispersion D. This is directly
analogous to the standard variance-to-
mean test for count data because, with
counts, the theoretical variance for the
Poisson distribution is the mean. Multi-
plying D by the number of sampling units
minus one (N — 1) produces the first test,
which is a chi-square statistic [x*(¥)]
with N — 1 degrees of freedom (21). The
significance of the statistic is calculated
by BBD using the algorithm in DIS-
CRETE (2). A large test statistic, x(V),
or small significance probability (P)
indicates that one rejects the null
hypothesis of a binomial distribution in

favor of the alternative hypothesis of a
distribution with a larger variance.

The second test, termed a C(a) test,
also is based on D. The formula is given
in Tarone (21). The calculated test
statistic is the standard normal deviate
(Z). A large Z or small P in this test
indicates that one can reject the null
hypothesis of (specifically) a binomial
distribution in favor of the alternative
hypothesis of a beta-binomial distribu-
tion. The significance level of Z is calcu-
lated by BBD, and the test of Z is one-
sided. One could use x*(¥) and Z to
decide which distribution was more
appropriate.

Input. To run BBD, data need to be
in an ASCII (i.e., text) file. Input data
are read by the program in either of two
possible formats: 1) data from each
sampling unit (diseased plants or leaves
[X] and n), or 2) data representing pre-
calculated frequency distributions (i.e.,
number of sampling units with 0, 1,...n

Title: Phomopsis on strawberry, 1992
Number of sampling units= 192 [a]
Observations/sampling unit= 25
(0 or negative means that units vary)
[b]
Moment estimates for BBD distribution: p= .1231 Theta=  .1398
Tests of Variances:
Homogeneity of variances: Chi Square= 757.22, df=191, Prob.=  .000
C(alpha) test for BBD: Z= 29.438, Prob.= .000
Maximum Likelihood Estimation (MLE) using Smith Algorithm
MLE run OK [c]
1 iterations of the Newton-Raphson MLE algorithm
p = .1233 Theta = .1351 [d]
SE(p) = .00854 SE(Theta) = .02005
Likelihood function = -1647.127
x Obs Freq BBD Freq Bin Freq [e]
0 43 45.23 7.16
1 41 33.83 25.17
2 21 26.33 42.47
3 22 20.63 45.78
4 15 16.15 35.40
5 14 12.58 20.90
6 7 9.73 9.80
7 8 7.45 3.74
8 8 5.65 1.18
9 3 4.23 .31
10 3 3.12 .07
11 0 2.27 .01
12 3 1.62- .00
25 0 .00 .00
BBD goodness-of-fit: [f]
ChiSquare = 5.071 df= 8
Classes pooled for Chi-square calculation = 15 Prob.= .750
Binomial goodness-of-fit:
ChiSquare = 332.688 df= 6
Classes pooled for Chi-square calculation = 18 Prob.= .000

Fig. 2. Example output from the BBD program. Data are for the incidence of strawberry
leaves with Phomopsis leaf blight. Bracketed letters on the right were added to the output
for annotation in the text. To save space, observed and expected frequencies between 13 and

24 were omitted.
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diseased plants). If n varies among
sampling units, only the first method can
be used. In a typical case of variable n,
there are missing plants in some sampling
units. Instructions for the program on
data format and output options are
included in the data file (see below).
Input format was designed to be similar
to that used for DISCRETE (2).

Two records must precede each set of
data. The first record contains the title,
consisting of any arbitrary description of
the data set. The second record (control
record) specifics: 1) the number of
records (lines) of data, 2) the number of
plants (or leaves) per sampling unit (n),
and 3) a code for the data style (indi-
vidual sampling units or frequency data).
If n varies among sampling units, a nega-
tive or zero value is given on the control
record for n; the program then reads both
X and n for each sampling unit. If n does
not vary but the control record specifies
that data from individual sampling units
are given (i.e., a positive value for n),
then the program reads only X for each
unit. A given data set can consist of up
to 500 sampling units, and the maximum

n is 199. Other options can be specified
which are described in the user’s manual,
available from the authors.

The data records follow the control
record, with one X (or X and n) or one
frequency class per record. Additional
data sets can follow the last data record;
these data sets are analyzed sequentially.
An example input data file is shown in
Figure 1; both the frequency (first two
sets) and the individual sampling unit
(last set) forms are shown.

Program execution and output. When
BBD is executed, the program prompts
the user for the name of the input file
and the name for an output file that is
created by the program. All output is
printed to the screen and is stored in the
output file. The output file can later be
printed or manipulated with a text editor.

Example output for the three data sets
of Figure 1 are given in Figures 2-4.
Other input and output data sets are
given with the user’s manual. In Figure
2, data are for the incidence of Phomop-
sis leaf blight of strawberry, caused by
Phomopsis obscurans (10). Observations
were made by visually assessing leaves

Title: Snedecor & Cochran, 1989, page 437
Number of sampling units= 40
Observations/sampling unit= 9
(0 or negative means that units vary)
Moment estimates for BBD distribution: p= .2750  Theta=  .3230
[a]
Tests of Variances:
Homogeneity of variances: Chi Square= 118.13, df= 39, Prob.=  .000
C(alpha) test for BBD: Z= 9.265, Prob.= .000
Maximum Likelihood Estimation (MLE) using Smith Algorithm
MLE run OK
2 iterations of the Newton-Raphson MLE algorithm
p = .2699 Theta = .3342 [b]
SE(p) = .03921 SE(Theta) = .10793
Likelihood function = -189.664
x Obs Freq BBD fFreq Bin Freq
0 11 10.41 2.36
1 7 7.43 7.84
2 5 5.85 11.60
3 4 4.68 10.01
4 4 3.72 5.55
5 3 2.89 2.05
6 3 2.16 .51
7 3 1.51 .08
8 0 .92 .01
9 0 41 .00
BBD goodness-of-fit: [c]
ChiSquare = .502 df= 2
Classes pooled for Chi-square calculation = 5 Prob.= .778
Binomial goodness-of-fit:
ChiSquare = 16.142 df= 2
Classes pooled for Chi-square calculation = 6 Prob.= .000

Fig. 3. Example output from the BBD program. Data are from an example in Snedecor and
Cochran (20, page 437) on incidence of infected plants. Bracketed letters on the right were

added to the output for annotation in the text.
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in acommercial strawberry planting (cul-
tivar Jewell) near Wooster, Ohio, on 25
June 1992. In each of 192 locations in
an area of about 20 X 30 m, the number
of leaves out of 25 with symptoms of
leaf blight was determined (L. V.
Madden, unpublished). Note that the
input data are in frequency form (Fig.
1) and that there are 16 records with data.
A record for frequency class 14 is omitted
because no sampling units with 14 dis-
eased leaves were found. A data record
could have been included for this class,
and the code for number of data records
on the control record would then be 17.

After printing some header informa-
tion, the number of sampling units
(quadrats) (N = 192) and observations
(that is, plants or leaves) per sampling
unit (n = 25) are printed by the program
(Fig. 2[a]). A negative (or zero) value
for n here would mean that n varies
among units (n,). Moment estimates of
p and 0 are given (Fig. 2[b]), followed
by the x*(¥) and Z statistics. Both tests
in the example indicate that the binomial
distribution was not appropriate (i.e., P
<< 0.05). BBD then prints results from
the maximum likelihood procedure. In
this case, it is shown that the MLE was
successful (“run OK”, Fig. 2[c]) and that
it took one iteration for convergence.
Convergence indicates that the change
in estimated parameters in the iterative
procedure fell below a threshold (default
of 0.01). When the method is not suc-
cessful, an error message number is
printed. The user’s manual gives the
meaning of the error numbers.

BBD then prints the MLE values for
p and 0, together with their standard
errors (Fig. 2[d]). As usual, the MLEs
in the example are close to the moment
estimates. The natural logarithm of the
likelihood (likelihood function) is
printed immediately below the param-
eters and their standard errors. The
maximum value of the likelihood func-
tion is found in MLE. Likelihood
functions can also be used to test whether
two or more distributions can be re-
garded as having common p and 6 values
(see reference 22 for an example).

The observed frequency distribution is
printed (Fig. 2[e]) unless it is suppressed
by an optional code on the control record
(see the user’s manual). The expected
frequencies are printed next to the ob-
served values unless »n varies among
sampling units (where it is impossible to
define the expected values), or the pro-
gram could not successfully estimate the
parameters (e.g., a non-negative 6 could
not be obtained).

The x2 goodness-of-fit test is presented
for each distribution if the expected
values can be calculated (Fig. 2[f]). For
the test, frequency classes are pooled
(starting at the largest X) so that all
expected values are greater than 5. This
is a conservative method to insure a
proper x* test. The pooled numbers are




not printed. Degrees of freedom (df’) are
equal to the number of classes after
pooling minus the number of estimated
parameters and minus one. In general,
the df will differ for the two distributions
because of differences in the number of
parameters estimated and the expected
frequencies calculated. The null hypoth-
esis here is that the specified distribution
is appropriate. Small x? value or large
P (“Prob.”) indicate that one cannot
reject the null hypothesis. In this exam-
ple, BBD was found to provide a good
fit to the data (x> = 5.07, df = 8, P =
0.75), but the binomial did not (P =0.00),
which is consistent with the earlier vari-
ance tests (Fig. 2[b]).

It is possible for calculated degrees of
freedom to be 0 or negative when there
is a small number of frequency classes
(after pooling). This often happens at low
p, when most of the X’s are 0 or very
low, or when N is small. In these cases,
the program arbitrarily lists P as 0.000
because the test cannot be performed.

A second example is shown in Figure
3 by analyzing a plant disease data set
given on page 437 of Statistical Methods,
8th ed. (20). Data on the number of
infected plants (disease and host not
specified) out of nine (n = 9) in each
of 40 locations is presented. This is
another case where the variance tests
indicated that the binomial distribution
(or a random pattern) was not appro-
priate (Fig. 3[a]). The estimate of 6 was
0.33 and about three times its standard
error (Fig. 3[b]), an indication that dis-
eased plants were highly aggregated.
Only the beta-binomial distribution
provided a good fit to the data (Fig. 3[c]).

As a final example, simulated data
with variable n were analyzed with BBD
(Fig. 4). A random sample of 25 observa-
tions (see Fig. 1) was generated for the
binomial distribution (p = 0.7) using a
version of the RANDOM command in
MINITAB (13). It was assumed here that
n varied from 5 to 8 based on a uniform
distibution. Generated uniform values
were rounded to the nearest integer. The
x*(V) and Z statistics both indicated, as
expected, that the binomial distribution
was appropriate (P > 0.05) (Fig. 4[a]).
The estimate of 6 was considerably less
than its standard error (Fig. 4[b]).
Because n was variable, expected values
for the two distributions could not be
calculated, and therefore, goodness-of-
fit could not be determined. Observed
frequencies were calculated (Fig. 4[c]) to
help the user visualize the data.

Test of the program. BBD has exe-
cuted successfully when analyzing pub-
lished data tests, in plant pathology and
other fields, and generated (simulated)
datasets (8; L. V. Madden, unpublished).
Normal completion of the program
occurs even when the maximum likeli-
hood procedure does not converge. To
demonstrate this program, we analyzed
the published data on the incidence of

potyvirus diseases of tobacco (12).
Briefly, the incidence of tobacco etch
virus (TEV) and tobacco vein mottling
virus (TVMV) was assessed in six fields
in 2 yr and in four fields a third year.
Fields were divided into either 75 or 50
quadrats (depending on the field size and
dimension) with either 40 or 60 plants
per quadrat (n = 40, 60). Fields were
assessed multiple times for virus symp-
toms, resulting in 188 data sets for analy-
sis. Mean disease incidence ranged from
107 to 0.89.

Moment estimates of the parameters
were obtained in all cases. The maximum
likelihood procedure converged in about
80% (151) of the data sets. That is, it
was possible to obtain MLEs of p and
0, as well as their standard errors, 80%
of the time. Lack of convergence was
related to mean number of diseased
plants (estimated by p). In 75% of the
times when convergence was not achieved,
p was less than 0.017. In these situations,
almost all quadrats had no diseased
plants, and very few quadrats had more
than one diseased plant. For this reason,
there were insufficient degrees of free-
dom to test for goodness-of-fit by either
distribution in 28 of the 37 cases. For
the remaining nine cases where conver-
gence was not achieved but goodness-
of-fit could be tested, four were well fitted
by the beta-binomial (using moment esti-

mates of p and 6). In none of these cases
did the binomial distribution fit the data.

Further assessment of the results was
conducted by considering only the data
sets with enough degrees of freedom to
determine goodness-of-fit (i.e., 131 data
sets with df > 0). The maximum like-
lihood procedure converged in 93% of
the cases, and the beta-binomial distri-
bution provided a good fit in 88%. The
moment and MLEs of the parameter
were similar. For instance, the average
absolute difference between the moment
and maximum likelihood estimates of p
was 0.0004. For 0, the average absolute
difference between the two types of esti-
mates was 0.0053. The variance ratio test
was significant (P < 0.05) for all of these
cases. Of these 131 data sets, only nine
were well fitted by the binomial distri-
bution. Of these nine, eight were better
fitted by the beta-binomial based on a
higher P value from the x’ test. There-
fore, only one data set was better fitted
by the binomial compared to the beta-
binomial distribution.

Discussion. We have found the FOR-
TRAN program BBD to be useful in
fitting the beta-binomial and binomial
distributions to disease-incidence data.
Because the program can run on virtually
any DOS-based personal computer, it
should provide a relatively easy means
for others to estimate parameters, com-

Title: Generated binomial data

Number of sampling units=

Tests of Variances:
C(alpha) test for BBD: Z=

MLE run 0K

.7058 Theta =
.03495 SE(Theta) =

p
SE(p)
Likelihood function =

Obs Freq BBD Freq

ONONHEWN = O X
N e —~OO

EXPECTED VALUES CANNOT BE CALCULATED

Observations/sampling unit=

(0 or negative means that units vary)

Moment estimates for BBD distribution:

Homogeneity of variances: Chi Square=
.028, Prob.=  .489
Maximum Likelihood Estimation (MLE) using Smith Algorithm

1 iterations of the Newton-Raphson MLE algorithm

.0011 [b]
.04237

-102.985
Bin Freq

25
-1

p= .7059  Theta= .0000

[a]

24.34, df= 24, Prob.= .442

[c]

Fig. 4. Example output from the BBD program. Data were generated (using MINITAB [13])
as a random sample from the binomial distribution with a variable n. Bracketed letters on
the right were added to the output for annotation in the text.
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pare the goodness-of-fit of both discrete
distributions, and test for aggregation or
clustering of disease incidence. Depend-
ing on the information available on the
position of diseased plants, BBD can be
used in conjunction with other programs
to analyze aggregation based on distance
between diseased plants (14), or on auto-
correlation of incidence values among
locations throughout fields (5,16).
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