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ABSTRACT

Yudin, L. S., Tabashnik, B. E., Cho, J. J., and Mitchell, W. C. 1990. Disease-prediction and

economic models for managing tomato spotted wilt virus disease in lettuce. Plant Dis. 74: 211-216.

We devised disease-prediction and economic models that enable growers with lettuce fields
affected by tomato spotted wilt virus (TSWV) to make management decisions early in the
planting cycle. Conditional probability and linear regression models based on field data were
used to examine disease incidence at harvest as a function of early disease incidence and cumulative
thrips abundance. Early disease incidence was a better predictor of disease incidence at harvest
than thrips abundance. A grower’s economic return at various levels of TSWV incidence was
estimated by incorporating expected disease incidence into an economic model.

Insect-transmitted viral pathogens of
plants cause considerable crop losses
worldwide (2,7,9,12). Tomato spotted
wilt virus (TSWYV) is an insect-trans-
mitted plant virus that seriously affects
crop production in both temperate and
tropical regions (8,13). TSWV affects
more than 200 plant species, including
crops such as tomato, lettuce, pepper,
peanut, tobacco, and several ornamen-
tals (for example, Chrysanthemum,
Impatiens, and Gloxinia spp.) (1,4).

TSWYV is transmitted only by certain
species of thrips (1,3). The western flower
thrips, Frankliniella occidentalis (Perg.),
is the predominant vector of TSWV
found in Hawaiian lettuce fields (3,18).

In Hawaii, TSWYV periodically causes
severe losses in lettuce production (3,6).
In some years, particularly in summer,
TSWYV destroys 50-90% of lettuce crops.
Although effective control measures for
limiting the spread of TSWV are not
available, the ability to predict disease
incidence at harvest would help growers
to make rational management decisions.
For example, predictions of high disease
incidence made early in a planting cycle
would let growers plow under unprofit-
able fields, thereby limiting production
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costs and reducing the buildup of TSWV
inoculum in the field.

In plant epidemiology, the goal of
forecast modeling is to minimize eco-
nomic losses caused by plant diseases
(16). Plant disease forecasting models
have been widely used in crop protection
to predict incidence of either pests or
pathogens in the field (15). Forecasting
models are especially important in agri-
cultural systems such as lettuce in
Hawaii, in which growers could benefit
greatly from predictions of how much
loss caused by disease can be expected
at harvest.

With this in mind, models were
developed from weekly data on TSWV
disease incidence and cumulative thrips
numbers that had been collected
previously. Based on these data, we
wanted to determine whether disease in-
cidence at harvest could be predicted
early in a planting cycle. The objectives
of our study were to develop empirical
models to predict TSWV disease inci-
dence in lettuce at harvest and to predict
profit at harvest by incorporating various
levels of disease incidence into an
economic model.

MATERIALS AND METHODS

Data collection. The forecasting
models were based on TSWV disease
incidence and thrips data collected
primarily at two farms in Kula, Maui,
between 1981 and 1985. At each farm,
three replicated plots were established
(6). All field plots were exposed to
normal farming practices, such as
pesticide applications and weeding. In
Kula, lettuce growers subdivide their
farms into sequentially planted blocks of
0.2-0.4 ha, with 15,000-20,000 lettuce
seedlings per block. Seedlings are
germinated in speedling trays (200 plants
per tray), then transplanted to the field

4 wk after germination. Lettuce is
harvested 7-8 wk after initial trans-
planting. In this report, the term “lettuce
cycle” refers to the period from trans-
planting to harvesting. In the lettuce
cycle, the transplanting week is week 0,
the first week after transplanting is week
1, and so on.

Disease surveys were conducted
weekly during 43 lettuce cycles. A lettuce
plant was considered infected with
TSWYV if it had characteristic visual
symptoms such as wilting, necrotic spots,
and lesions on the leaves and midribs.
In a previous study (6), both serology
and mechanical inoculations on diagnos-
tic plant hosts confirmed that typical
disease symptoms are caused by TSWV.
TSWYV incidence was based on the
average number of plants infected at the
end of each lettuce cycle. During 30 of
43 lettuce cycles, data on thrips abun-
dance were collected from yellow sticky
cup traps as previously described (6).
Periodic identification confirmed that F.
occidentalis was the most abundant
thrips collected during our study.

Conditional probability. Conditional
probability was examined to provide a
simple tool for predicting disease inci-
dence at harvest from disease incidence
early in the lettuce cycle (weeks 1-4).
Disease incidence at harvest was divided
into six classes: 0-10%, 11-20%, 21-30%,
31-40%, 41-50%, and >50%. Early
disease incidence (weeks 1-4) was
separated into three classes: 0-10%,
11-20%, and >20%. Using field data, we
calculated the conditional probability for
each combination of early disease
incidence and for disease incidence at
harvest. Four separate analyses were
performed using disease incidence levels
from weeks 1-4 (43 disease cycles).

Disease-forecasting model. A disease-
forecasting model was designed to
predict disease incidence at harvest (DH)
using data on disease incidence, thrips
abundance, or both. From the disease
data, we knew the percentage of diseased
plants (D) at a particular time (¢) early
in the lettuce cycle. For example, D, is
the disease incidence at week 2. The
change in disease (Y) was defined as the
percentage of healthy plants at week ¢
that became diseased by harvest. If we
can estimate Y, then we can predict DH
as follows: DH = D, + [(Y/100%) X
(100% — D,)]. For example, if D, = 20%
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and Y = 50%, then DH = 60%,.

In disease surveys where both disease
and thrips data were available, multiple
linear regression analyses were used to
estimate Y from early disease incidence
data(D,) and early thrips abundance (7).
Thrips abundance was based on the cum-
ulative average of thrips per trap for each
week in the lettuce cycle.

Log transformation of D, T, and Y
yielded a normal distribution of the data.
Four separate multiple regression anal-
yses were performed on the transformed
data to test the relationship between in-
dependent variables D, and T, at weeks
1-4 and the change in disease (Y) (14).
In addition to the multiple regression
analyses, separate linear regression
analyses were run between both indepen-
dent variables (D, and T,) and the change
in disease (Y) (14). We also generated

Table 1. Fixed, variable, and marketing costs
associated with producing a block of lettuce

in Maui, Hawaii

Type of costs Amount
Fixed
Depreciation on building
and equipment $10.00
Rent 5.00
Insurance 10.00
Taxes 2.50
Interest 7.50
Research 5.00
Miscellaneous 5.00
Total $45.00
Variable
Preparation
Seeds $ 25.00
Speedling trays 10.00
Seedling medium 100.00
Fertilizer 50.00
Fumigants 50.00
Pesticides 30.00
Water 45.00
Equipment and fuel 75.00
Labor 150.00
Miscellaneous 25.00
Subtotal $560.00
Field production
Pesticides $ 75.00
Water 100.00
Equipment and fuel 75.00
Labor 400.00
Miscellaneous 25.00
Subtotal $675.00
Harvesting
Equipment and fuel $ 25.00
Labor 150.00
Miscellaneous 25.00
Subtotal 200.00
Total $1,435.00
Marketing

Package carton

$1.35/carton

Vacuum cooling Ie/lb
Co-op fee 129% of net
Trucking $15.00/block
Shipping to Oahu 3le/lb
Sales tax 1.5%
Miscellaneous $0.00
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95% upper and lower confidence limits
for each of the single linear regression
analyses.

Economic model. An economic model
was designed to estimate a grower’s net
return for a given block of lettuce (Rn).
The model used the following equation:
Rn = Rg — Cf — Cv — Cm, where Rg
= gross return, Cf = fixed costs, Cv =
variable production costs, and Cm =
marketing costs (Table 1). Fixed costs
included items such as rent, depreciation
on buildings or equipment, interest, and
taxes. Variable production costs were
subdivided into preparation, field pro-
duction, and harvesting costs. Field
production and harvesting costs included
inputs between transplanting and
harvesting such as pesticides, irrigation,
equipment use, and labor. Marketing

costs were proportional to yield and were
determined by multiplying each service
charge—vacuum cooling (¢/kg), cooper-
ative fee (% of profit), shipping (¢/kg),
and sales tax (%)—by the total yield (kg)
at harvest. All of these costs were based
primarily on a previous analysis of head
lettuce in Kula (10). Additional data were
obtained from five lettuce growers on
Maui.

The gross return is the product of yield
X price. Maximum yield (assuming no
losses) was determined as follows: yield
= transplants/blocks X harvested
plants/transplants X 0.6 kg/plant. For
purposes of this analysis we assumed
17,000 lettuce transplants per block and
25 harvested plants per carton.

The ratio of harvested plants per trans-
plant (i.e., proportion of maximum yield)
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Fig. 1. Disease incidence and thrips abundance for three typical lettuce cycles in Kula, Hawaii.



can be expressed as 1 — proportion of
crop lost. If TSWV is the only source
of loss, then the proportion of maximum
yield is 1 — (DH/100%). A lettuce plant
was not marketable if it had any char-
acteristic visible TSWV symptoms.

Sensitivity analysis. A sensitivity ana-
lysis was used to evaluate the impact of
disease incidence on economic return.
Grower profits were projected as a func-
tion of variation in disease incidence at
harvest (0-100%). Price at harvest was
estimated from historical trends in price
data. Price was systematically varied to
examine alternative assumptions (12 and
15¢/kg). Costs used in the analysis are
listed in Table 1.

RESULTS

Disease progression and thrips abun-
dance. Figure 1 shows disease progres-
sion and cumulative thrips abundance
for three typical lettuce cycles. TSWV
disease incidence at harvest ranged from
0.33% to 97.5% (mean = 30.6% =* 4.8
SE, n = 43 lettuce cycles). Eleven of 43
cycles surveyed had greater than 50%
incidence at harvest. Thrips abundance
varied from four to 374 adults per trap
per week (mean = 52.0 = 3.8 SE, n =
1,530 traps). Cumulative thrips abun-
dance at harvest ranged from 52 to 1,206
adults per trap (mean = 313.4 + 41.2
SE, n = 254 traps).

Conditional probability. Disease inci-
dence data from weeks 2, 3, and 4 were
useful indicators of disease incidence at
harvest, but data from week 1 were not
(Table 2). Although disease incidence at
harvest varied widely, disease incidence
at week 1 was always less than 10%
(Table 2). If disease incidence remained
under 10% during weeks 2-4, however,
then disease at harvest was less than 209
for most cycles (78% for week 2, 89%
for week 3, 100% for week 4). If disease
incidence was 11-20%, then the number
of cycles in which disease at harvest
exceeded 50% was 75% for week 2, 20%
for week 3, and 10% for week 4. If disease
incidence was greater than 209, the
number of cycles in which disease at
harvest exceeded 509% was 75% for week
2, 83% for week 3, and 729% for week
4. In other words, if disease incidence
was below 109% at week 2 or below 20%
at week 3 or 4, then TSWYV was rarely
aserious problem at harvest. Conversely,
if disease incidence exceeded 109 at week
2 or 20% at week 3 or 4, then TSWV
was likely to cause serious loss (>>509%)
at harvest.

Regression analyses. Each of the four
multiple linear regressions (from weeks
1-4) was significant, with 46-799%, of the
variation in change in disease (Y)
accounted for by early disease incidence
(D,) and thrips abundance (T;) (Table 3).
However, most of that variation was
accounted for by early disease incidence
rather than by thrips abundance. Thrips

abundance (7)) represented a significant
portion of the overall regression only at
week 1 (Table 3).

Each of the eight single linear
regressions was significant, with 17-71%
of the variation in change in disease (Y)
accounted for by early disease incidence
(D)) and 14-33% of the variation
accounted for by thrips abundance (7))
(Table 4). At week 1, thrips abundance
was the best predictor of change in
disease (R? = 0.32) (Table 4, Fig. 2).
Compared with thrips abundance, early
disease incidence accounted for more of
the variation in Y at weeks 2, 3, and 4
(R*=0.57, 0.71, and 0.68, respectively)
(Table 4, Figs. 3-5).

Sensitivity analyses. Sensitivity anal-
yses demonstrate how much a grower can

expect in return (in dollars per block)
as a function of disease incidence at
harvest and lettuce price (Fig. 6).
Assuming that no loss is caused by
TSWV at harvest and the grower can
get a price of 12¢/kg, the expected profit
per block is $1,650; at 15¢/kg, the
expected profit per block is $2,700 (Fig.
6). At the other extreme, however, if the
loss caused by TSWV is 100% and inputs
continue until harvest, then the grower
loses $1,480 per block (independent of
price, because yield = 0). As the lettuce
price increases, a grower can lose more
to disease and still make a profit at
harvest. At 12¢/kg, a grower can break
even (return = 0) with 52% disease loss
at harvest. At 15¢/kg, a grower breaks
even at about 64% disease loss (Fig. 6).

Table 2. Conditional probabilities of TSWV incidence at harvest given TSWYV incidence at

weeks 1-4
. E’."]y Incidence at harvest (%)
incidence
(%) 0-10 11-20 21-30 31-40 41-50 >50 No.
Week 1
0-10 0.35 0.21 0.07 0.09 0.02 0.26 43
11-20 0.00 0.00 0.00 0.00 0.00 0.00 0
>20 0.00 0.00 0.00 0.00 0.00 0.00 0
Week 2
0-10 0.45 0.33 0.10 0.06 0.03 0.03 31
11-20 0.00 0.00 0.00 0.25 0.00 0.75 4
>20 0.00 0.00 0.00 0.12 0.12 0.75 8
Week 3
0-10 0.58 0.31 0.08 0.00 0.04 0.00 26
11-20 0.00 0.40 0.20 0.20 0.00 0.20 5
>20 0.00 0.00 0.00 0.08 0.08 0.83 12
Week 4
0-10 0.71 0.29 0.00 0.00 0.00 0.00 21
11-20 0.00 0.50 0.40 0.00 0.00 0.10 8
>20 0.00 0.00 0.00 0.07 0.21 0.72 14

Table 3. Multiple linear regression models for predicting change in disease (Y) using early
disease incidence (Dt) and cumulative thrips abundance (Tt)

Weeks after Independent
transplant variables® R? df Equation P
1 Disease (D)) 0.46 26 log Y =—0.10 + 0.74 log D, 0.0006
Thrips (T)) +0.67 log T,
2 Disease (D,) 0.60 29 log Y= 0.49 + 0.88 log D, 0.0001
3 Disease (D;) 0.79 29 log Y= 10.02+0.98 log D, 0.0001
4 Disease (Dy) 0.56 24 log Y =—0.25+ 1.06 log D, 0.0001

* Only those variables significant at P <0.05 were included in the overall regression.

Table 4. Single linear regression models for predicting change in disease (Y) using early disease
incidence (Dr) and cumulative thrips abundance (7¢)

Weeks after Independent
transplant variables® R? df Equation P
1 Disease (D) 0.17 42 log Y= 0.09 + 0.94 log D, 0.0050
Thrips (T)) 0.32 29 log Y=—0.18 + 0.79 log T 0.0020
2 Disease (D,) 0.57 42 log Y= 0.62+ 0.82log D, 0.0001
Thrips (T5) 0.33 29 log Y=-—0.36+0.76 log T, 0.0010
3 Disease (D;) 0.71 42 log Y= 0.24 4 0.86 log D, 0.0001
Thrips (T3) 0.27 29 log Y=—0.72 4+ 0.80 log T3 0.0030
4 Disease (D) 0.68 37 log Y=-0.02 + 0.91 log D, 0.0001
Thrips (T}) 0.14 24 log Y =—0.96 + 0.78 log T, 0.0300

* Only those variables significant at P <0.05 were included in the overall regression.
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DISCUSSION

Our data show that disease incidence
at harvest is significantly associated with
early disease incidence and early thrips
abundance. The use of thrips abundance
to predict disease incidence at harvest lets
the grower make predictions before
disease symptoms appear. Because the
incubation period for TSWV is
approximately 1 wk, disease symptoms
cannot be seen in newly transplanted
lettuce for at least 7 days—unless the
seedlings were infected before being
placed in the field. Consequently, the use
of thrips abundance levels during the first
week is critical to predicting losses at
harvest when disease expression is either
extremely low or not present. Once
symptom expression begins, disease
incidence (determined by sympto-
matology) is an excellent means for
estimating disease incidence at harvest
(Table 3). The best prediction method
would be to collect thrips data for the
first week and then collect disease
incidence data for weeks 2, 3, and 4.

The activities of viruliferous thrips
play a vital role in the spread of TSWYV.
Previous studies show that only a small
percentage of thrips collected in the Kula
farm area are viruliferous (Cho et al,
unpublished). An enzyme-linked immun-
osorbent assay (ELISA) method has
been recently developed to detect TSWV
in single thrips (5). Our study did not
address the question of whether the
spread of TSWV was caused mainly by
viruliferous thrips migrating into the
lettuce farms from reservoir hosts or by
their movement from plant to plant
within a field. Vanderplank (17) sug-
gested that TSWYV fits a simple-interest
model because “spotted wilt virus was
entering fields from without” and plant-
to-plant dissemination within the tomato
fields could not be detected. Penny-
packer et al (11), examining the same
data, suggested that the spatial pattern
of TSWV fits a logistic model that
assumes plant-to-plant movement of the
pathogen does exist. Once thrips begin
to colonize a lettuce block, they feed and
reproduce easily on lettuce and seem to
prefer infected lettuce to healthy plants
(19). Hence, spread of TSWV within a
field from infected lettuce to healthy
plants is certainly feasible. Our data
include some patterns of disease spread
that fit a logistic model and others that
fit a simple-interest model.

The models we have described are
useful in both short-term and long-term
planning. The key decision in short-term
planning is whether to continue inputs
during a particular lettuce cycle; the key
long-term decision is whether lettuce can
be grown profitably after allowing for
typical yield losses caused by TSWYV,

When planning for the short term, a
grower would stop inputs if expected net
return after continued inputs is projected
to be lower than that resulting if inputs

are discontinued. For example, assume
that by week 2 a grower has spent $773
(fixed costs [$45] + preparation costs
[$560] + 2 wk of field production costs
[$168]) (Table 1). If inputs stop at week
2, the grower loses $773. To justify
continuing the inputs after week 2, the
grower’s expected net return at harvest
must be greater than —$773. The sen-
sitivity analysis shows that if the price
of lettuce is 12¢/ kg, the grower’s expected
net return is —$773 at a disease incidence
at harvest of 77% (Fig. 6).

The conditional probability table
(Table 2) shows that if disease incidence
is at or below 109 at week 2, the chance
of disease incidence at harvest exceeding
50% is only 3%; in this case, inputs should
be continued. If disease incidence at week
2 is above 10%, however, the conditional
probability table does not provide a
definite recommendation.

The single linear regression forecasting
model (Table 4) predicts 77% disease
incidence at harvest when disease inci-
dence at week 2 is 30%. Therefore, if
disease incidence at week 2 is greater than
30%, expected net return is less than
—$773. Knowing this, the grower should
stop inputs to reduce losses and plow
the field under to limit the source of
inoculum.

The 95% confidence limits give an
indication of the variation that can be
expected. If disease incidence at week 2
is 20%, the grower’s expected return
ranges from $506 to —$732 at 12¢/kg
(Fig. 7). Since the lowest expected return
within this interval (—$732) is still less
of a loss than the —$773 already accrued
by week 2, the grower should continue
field inputs. However, if disease inci-
dence at week 2 is 25%, then the grower’s
expected return ranges from $335 to
—$1,395 (Fig. 7). In this case, the
grower’s net return might exceed the
—$773 accrued at week 2; other factors
besides return (such as uncertainty in
market price at harvest or the feasibility
of trying to limit the field source of
inoculum so that adjacent or future
plantings may be less affected by TSWV)
might be taken into consideration before
deciding to continue field inputs or plow
the field under.

In long-term management planning,
the decision to remain in production is
based on typical disease pressures,
expected market prices, and whether
profit goals set by the grower can be met.
In most years, lettuce production in Kula
has been profitable. In only in a few cases
would it have been economically justified
to discontinue production. Among the
43 Jettuce cycles we surveyed, the mean
disease incidence at harvest was 30.6%.
Using the economic parameters in our
sensitivity analysis, the expected return
at 30.6% loss at harvest would be $683
at 12¢/kg and $1,535 at 15¢/kg (Fig. 6).
However, profitability may deteriorate in
the future; we have seen an alarming rate

of TSWV incidence spread in other
lettuce-growing areas in Hawaii. Fur-
thermore, the cost of producing a single
head of lettuce in Hawaii is expected to
increase due to rising labor, fuel, and
pesticide costs, while California is
expected to continue to supply the mar-
ket with lettuce at competitive prices.

The uniqueness of our economic and
disease prediction models is their prac-
tical application at the farm level.
Because diseased lettuce plants are easily
observed in the field, initial disease
incidence can be monitored by growers,
scouts, or extension agents. The condi-
tional probability table is a tool that a
grower can readily use for short-term
decisions (i.e., whether to continue to the
next week) and as an early indicator of
whether additional disease monitoring is
warranted. The regression model is more
complex—but also more precise—than
the conditional probability anaylsis. A
flexible, user-friendly computer program
has been developed that incorporates
both models and predicts both yield loss
and expected profit on the basis of
different prices, block sizes, and input
costs. Individual growers can incorpo-
rate their own estimates to project
individual profitability. This program
can be obtained free of charge by sending
aformatted diskette to the senior author.

Our study demonstrates some produc-
tive avenues for improving control of
TSWYV. Perhaps more important, it has
unified biological and economic infor-
mation into a conceptually based quan-
titative framework that can be applied
immediately in the management of
TSWYV disease.
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