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Estimates of yield reduction due to disease in cereal crops are
used at the national, international, corporate, and local levels.
At the national level, the best possible worldwide yield
predictions are needed in order to make intelligent trade
decisions. Agrichemical companies must be able to plan the
manufacturing and marketing of appropriate pesticides.
Individual farmers need accurate and early estimates of damage
caused by disease in order to decide whether to take
countermeasures. In this paper we report the development of
two rule-based programs designed to improve the timeliness
and quality of disease predictions.

The expert systems approach

Two major wheat diseases are stripe rust caused by Puccinia
striiformis West. and Septoria nodorum blotch caused by
Leptosphaeria nodorum Miiller. Both fungi are parasitic on
portions of the plants above the ground. Stripe rust and
Septoria nodorum blotch are usually controlled by planting
resistant wheat cultivars and, in certain circumstances, by using
chemical fungicides. Although wheat cultivars planted in a
region may have some resistance to a disease, extensive yield
losses may still occur in times of severe epidemics or in the
presence of a new race of the pathogen. Because fungicides are
expensive and carry the threat of adverse environmental
consequences, one strategy is to apply fungicides only when
yield is threatened severely.

The difficulty in this strategy is in discriminating between
major and minor threats to yield. Although disease symptoms
may be visible on the plants, the effect on yield is not easily
determined, since much depends on how many infection cycles
have occurred at appropriate times in the various stages of plant
growth (10,12).

A computer can help in accurately and tirelessly tracking
infection cycles and calculating the expected yield reduction. If
a computerized system is to make use of the best available
knowledge in plant pathology; be easily adaptable to different
regions, cultivars, and climatological conditions; and be useful
at both national and local levels, it must be modifiable by
people who are not programmers. This type of programming is
available through expert systems.

Expert computer systems consist of programming and
information that exhibit and utilize expert knowledge in a given
field. The expert knowledge is kept separate from general
programming logic by putting facts and rules derived from
experts into a file called a “knowledge base.” The program that
then considers and applies those facts and rules is called an
“inference engine.” The separation of the expert knowledge
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base and inference engine makes it possible to modify the
knowledge without extensive programming changes. It is also
possible to obtain explanations from the system concerning the
way in which a conclusion was reached. Numerous survey
articles present the basic concepts of expert systems in more
detail (e.g., 1,2,4,5,8).

Working expert systems have been developed in a variety of
areas, including disease control on winter wheat (2), pest and
drought control for apple orchard management (2), diagnosis
of soybean diseases (9), and determination of irrigation and
fertilization schedules for cotton crops (7). These systems differ
not only in the expertise contained in their knowledge bases but
also in the types of conclusions that can be generated. For
example, most expert systems relating to the biological sciences
are “diagnostic,” in that they attempt to identify an organism or
a therapeutic treatment. Some biologically related expert
systems focus on the relationships among weather, soil
composition, human intervention, and plant development (7).

The success of an expert systems project depends largely on
the importance and tractability of the problem under
consideration and on the availability of suitable expertise (1,4).
The problem itself should be part of a narrow field of
knowledge, whereas the value associated with its solution
should be substantial. Experts must be willing to invest a
considerable amount of time in communicating their expertise,
and it would be helpful if they were accustomed to articulating
their knowledge to neophytes. The problem-solving process for
the human experts should take more than a few minutes but less
than an hour. If a solution requires only a moment of the
expert’s time, methodologies simpler than an expert systems
approach would probably suffice. If a solution requires more
than an hour of the expert’s cogitation, the thought processes
probably could not be incorporated adequately in a computer
program.

Design constraints

In this study, the expert system EPINFORM was developed
for predicting the effects of stripe rust and Septoria nodorum
blotch on wheat yields relatively early in a growing season.
EPINFORM was designed for use on any IBM or compatible
personal computer running DOS 2.1 or greater. This was done
to enable individual farmers to use the system on a personal
computer with as little as 64K bytes of main memory.

A more difficult design constraint involves the management
of unknown data values by the expert system. Many of the
conclusions in the knowledge bases depend on having values for
critical input variables, such as the number of hours of dew
during one night. Although it is possible that the user will know
each day how many hours of dew there were the previous night,
the system has to allow this value to be unknown at times. In
this case, a knowledge base rule is used that estimates hours of
dew in terms of other variables. In general, the expert system
may determine a value for a variable from a rule in the
knowledge base, or it may use a default value, or it may have to
ask the user for critical information that cannot be estimated
artificially. For example, default values are used for such things
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as heading and flowering dates, but the user must supply the
amount of precipitation (a critical quantity in the model that
cannot be derived in terms of other knowledge).

The knowledge bases of EPINFORM do not contain any
knowledge of plant growth and development. Although there
are many models of plant growth that depend on climatological
data, such models do not always correspond exactly to what is
occurring in the field. To avoid introducing damaging plant
growth errors, the knowledge bases state conclusions as a
percentage depreciation of the expected yield in the absence of
disease. Of course, those using EPINFORM would find it
possible to incorporate a plant growth model into a knowledge
base by including additional rules.

Construction of EPINFORM

The expert system EPINFORM consists of several files and
programs. The major component of the system is the inference
engine, INFER (Fig. 1). This program issues requests to the
user for daily data and then progresses through the knowledge
base, recording conclusions both on the screen and in a file that
maintains a log of important events, e.g., the predicted
occurrence of an infection. Another program called EXPLAIN
can provide justifications for derived conclusions, when
desired, by retrieving conclusions and the conditions that
generated them during a specified time interval. This is
accomplished by examining the appropriate parts of the log and
database files, then printing a compact report of selected
variables.

The knowledge bases consist of “if-then” rules that can be
understood and modified, even by users who are not
experienced programmers. Figure 2 shows some of the rules
contained in the stripe rust knowledge base. The complete stripe
rust knowledge base currently has 54 rules, 18 of which estimate
yield reduction either before the flowering date (e.g., rule 27) or
at the flowering date (e.g., rule 28). The conclusions of the rules
involve either printing and logging a deduction (rules 10, 27,
and 28) or assigning a value to a variable (all the other rules).
The conditions of the rules are expressions involving variables
and any combination of elementary arithmetic and logical
operators. Variables can be integer, real, string, or Boolean in
type. The actual value of a variable may be unknown. Whenever
such a variable is encountered by the inference engine as part of
a condition, a rule is sought that concerns the variable as the
conclusion. When no rule can determine the value of the
variable sought, the system uses a default value or, in the case of
a critical variable, requests that the user supply a value.

Each knowledge base models the progression of a disease.
Both stripe rust and Septoria nodorum blotch occur in cycles
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Fig. 1. EPINFORM system flowchart.
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that begin with the infection of leaves by spores and end with the
production of new spores days later. The knowledge base rules
maintain a cycle clock for tracking the infection cycles. The
clock is started when the climatological conditions for an
infection exist (Fig. 2, rule 11). These conditions are associated
with the germination of a large majority of the available
inoculum. The influence of any remaining spores and
intermediate cycles they might initiate is assumed to be
negligible. Thus, for our purposes, cycles are always distinct.
When the clock reaches the cycle length, as determined by a
knowledge base rule (rule 15 or 16), another rule records the
effect of the cycle (rule 7 or 8), and the system awaits conditions
necessary for reinfection (rules 9-11). Several infection cycles
must occur before their cumulative influence would cause the
rules to indicate any prospective yield reduction.

Both knowledge bases involve the assumption that some
effective initial inoculum is present to begin an infection. These
pathogens are not killed by extremely cold winters because of
their ability to survive as pycnidiospores in fruiting bodies, as
dormant mycelium in leaves (11), or on senescent leaves and
plant debris (12). Furthermore, in regions where these diseases
are often damaging to yields, there are so many spores
constantly available that it seems reasonable to be unconcerned
with the proliferation of the spores.

Accuracy of EPINFORM’s predictions

Because expert systems involve the separation of expert
knowledge from other programming, the rules contained in a
knowledge base can be modified as a result of experience in
running the system. Consequently, further development of the
knowledge bases is expected as testing takes place. An expert
system is presumed to require many years of refinement during
its entire useful life (4).

Ideally, each knowledge base would be tested by comparing
its prediction of yield reduction with the actual percentage of
yield reduction caused by the disease. Obtaining documented
cases of yield reduction attributable only to the disease in
question is difficult, however. The yield testing performed thus
far has involved yield data obtained through fungicide trials.
Since a fungicide will usually affect more than one pathogen, we
expect the percentage yield difference between treated and
nontreated plants to be larger than that predicted by
EPINFORM.

Data from the years 1975, 1976, and 1978 for Pullman and
Walla Walla, Washington, all indicate larger losses from stripe
rust than those predicted by EPINFORM (Table 1). Other
diseases, such as leaf rust, Septoria tritici blotch, and powdery
mildew, were present to varying degrees in the experimental
plots examined. Because the diseases were affected to different
extents by the fungicides applied and because EPINFORM was
predicting losses caused only by stripe rust, we believe the
predictions of losses attributed to stripe rust to be reasonably
accurate. In 1981, when the principal losses were caused by




stripe rust alone, the prediction of EPINFORM was very close.
And in 1982, when only leaf rust symptoms were evident,
EPINFORM correctly predicted no yield losses due to stripe
rust.

Another kind of testing is needed to determine whether
EPINFORM’s predictions of disease cycles are valid. For stripe
rust, field measurements of disease severity have been
published. Severity refers to the percentage of a leaf showing

disease symptoms. Severity readings taken at various stages of
plant growth can be compared with predictions made by
EPINFORM.

EPINFORM was tested against all early-season stripe rust
readings that we have been able to locate. We obtained daily
high and low temperature and precipitation readings from
climatological data provided by the National Oceanic and
Atmospheric Administration. A 10-year mean was used to

. HoursDew:4 IF Humidity <=

12. TotalLows:0 IF CycleDay=1;

(( Hoursbhew>8 and (

1. Humidity:95 IF AridArea and Precipitation > .01;
2. Humidity:75 IF AridArea and
Precipitation > 0 and Precipitation <= .01;
3. BootDate: HeadingDate - 5 ALWAYS;
4, HoursDew:8 IF Humidity > 80;
5 80 and Humidity >= 70;
6. CycleDay: CycleDay + 1 IF CycleDay>0;
7. Severity: Severity®#10 IF Severity>0 and
CycleDay>=CycleLength;
8. Severity:1 IF Severity=0 and Prevalence>=100 and
CycleDay>=CycleLength;
9. CycleDay:0 IF CycleDay>=CycleLength;
10. "INFECTION HAS OCCURRED" IF
HoursDew>4 and
(LowTemp>33 and LowTemp<56) and
(CycleDay=0 or CycleDay>CycleLength);
11. CycleDay:1 IF HoursDew>}4 and
(LowTemp>33 and LowTemp<56) and
(CycleDay=0 or CycleDay>CycleLength);

13. TotalLows: TotalLows + LowTemp IF CycleDay>0;

14, AverageLow: TotalLows/CycleDay IF CycleDay>0;

15. CycleLength:20 IF AverageLow<=z}§1;

16. CycleLength:18 IF AverageLow>41 and AverageLow<4g;

17. Prevalence:100 IF Prevalence<100 and CycleDay<5 and
HoursDew>8 and
(LowTemp>41 and LowTemp<ig);

18. Prevalence: 11%*Prevalence IF

Prevalence<100 and CycleDay<5 and

or (LowTemp>49 and LowTemp<56)))
or ( HoursDew>l4 and HoursDew<9 and
LowTenmp>41 and LowTemp<49));

19. InfectionType:8 IF AverageLow<=59 and CycleDay=z}4;

20. InfectionType:2 IF AverageLow>=67 and CycleDay=4;

21. ResponseSymbol:0.1 IF InfectionType=2;

22. ResponseSymbol:1 IF InfectionType=8;

23. ResponseSymbol: ResponseSymbol/10 IF Resistancez"R";

24, Coefficient: Severity®#ResponseSymbol ALWAYS;

25, BootCoeff:Coefficient IF JulianDate=BootDate;

26. FlowerCoeff:Coefficient IF JulianDatezFlowerDate;

27. "YIELD LOSSES DUE TO RUST MAY BE DEVASTATING" IF
CycleDay=4 and Coefficient>=50 and
JulianDate<FlowerDate;

28. "YIELD REDUCTION DUE TO RUST WILL BE 50 TO T0%" IF
JulianDate>=FlowerDate and
FlowerCoeff>=50 and FlowerCoeff<90 and
BootCoeff>=9 and BootCoeff<90;

(LowTemp>33 and LowTemp<}43)

Fig. 2. Some of the rules from the stripe rust knowledge base.
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Table 2. Stripe rust severity, oBsérved and predicted;

Dates of
Year Location measurements

1984 Pullman, WA 2and 3 July
1983 Pullman, WA o lddune
: . 17 June
28 June
26and 27 May
. 1-5]June
~ 15June
30 June-1 July
30 May-2 June

1981 Pullman, WA

1977  Walla Walla, WA
1975 Pullman, WA : 22 June-3 July
1974 Pullman, WA - 915 June
*Data from “Results from Cooperative Wheat Vari

reading recorded for a particular cultivar at a parti
" Severity predicted for 27 June was in 10-50% rang

estimate the date on which plants emerge from winter
dormancy (3). The expert system was run from that point to
produce its predictions. The results are given in Table 2.
EPINFORM seems to identify well the times when observed
severity measurements are uniformly high or low.

The Septoria knowledge base does not consider severity but,
rather, the number of disease cycles occurring relative to
important points in the plants’ development. Thus, the testing
of this knowledge base must rely on documented statements of
yield reduction attributable to Septoria nodorum blotch. Since
estimated yield reduction due to disease is usually stated
qualitatively (high, moderate, or low) in wheat reports,
thorough testing of the Septoria knowledge base is anticipated
to take much longer than the stripe rust testing. We have
verified that EPINFORM’s predictions of yield reduction
caused by Septoria nodorum blotch correspond to our human
expert’s predictions when provided with the same input data.

Obtaining adequate historical data for testing is difficult. In
addition to daily high and low temperatures and precipitation
readings, the expert system must also be supplied with data such
as the date on which plants emerge from winter dormancy and
the date on which most of the plants reach certain stages of
growth. These dates vary for different cultivars and regions and
from year to year, thus complicating the testing process.
Reports of actual disease intensities must be found that include
field location, wheat cultivars grown, and dates on which
readings were taken. Only those readings taken at or before the
milk stage of plant development are used, since predictions
must be made relatively early to be of value.

Difficulties in obtaining documented disease intensities and
yield consequences have limited testing based on published
data. The initial results reported are extremely encouraging,
however. Both knowledge bases have been provided to over a
dozen researchers who work in different experimental
environments for real-time testing. The generation of a
sufficient amount of field data for use in testing the system’s
validity is expected to take two more years.

In contrast to a regional model for predicting stripe rust on
winter wheat developed by Coakley et al (3), our expert system
is more local and, more important, actually models the progress
of the disease. The Coakley et al model is statistical and focuses
on the key variables of degree days and disease intensity.
Although it is subject to error on a local level because of
particular climatological conditions relative to the disease, the
Coakley et al model seems to be quite accurate for regional
predictions. Conversely, our expert system appears to give good
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predictions at the level of an individual weather reporting
station, but some method would have to be developed to
integrate results from many reporting stations to give
predictions for a larger region.

The expert systems could be expanded to include a cost-
benefit analysis for fungicide use. If this were done, market
expectations and fungicide costs would have to be included in
the knowledge bases. Another area for possible enhancement of
the system could involve making use of in-field weather sensors
as _described by Jones et al (6). We are grateful to W. L.
Pedersen for pointing out that the rule-based nature of
EPINFORM and its ability to generate explanations suggest it
could be applied usefully in a teaching situation. A student of
epidemiology could employ a variation of parameters
technique with the expert system to determine, for example, the
sensitivity of the disease to diverse environmental conditions.

EPINFORM is in the public domain and can be obtained at
cost ($10) from the authors. An IBM formatted floppy disk
contains all the programs and files as well as a user’s manual.
The source code also is available on request at no additional
charge.
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