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A variety of disease agents, including air pollutants, produce
visible symptoms on foliage, and these symptoms are
potentially useful for identifying causal agents, for estimating
doses, and, in some cases, for indicating effects on yield
(5,19,27,30,44,53). In diseases induced by biotic agents,
pathologists often can rely on such signs as fruiting structures
and mycelia, as well as on visible symptoms, to identify the
causal agents (1). Because such signs are lacking in diseases
induced by air pollutants, however, visible symptoms must
often be relied on to aid diagnosis, in company with
information on the pollution regime of a site.

The importance of visible symptoms in studies of disease
induced by air pollution hinges on the ability to relate
symptoms to causal agents and biological effects. Such
relationships are not always clear. The visible symptoms
produced by some air pollutants are not unique to one
particular pollutant, and symptoms of other diseases often
mimic those produced by air pollutant exposure (25,30,32,48).
Furthermore, it is not always clear that visible foliar injury
relates to other biological effects such as growth. In some cases,
foliar injury of trees is correlated with impaired growth (5). In
other cases, injury may be “invisible” (51), and tree growth is
reduced without apparent foliar injury (41,43). Finally, some
crops have “tolerance” to pollutants, and visible injury occurs
without corresponding growth reductions (19).

Despite these uncertainties, studies of air pollution effects on
vegetation often rely in part on visible foliar injury to indicate
presence and severity of effects (19,25,30,33,37,39,44,48,53).
Much effort has gone into elucidating which symptoms relate
least ambiguously to the pollutant(s) of concern and into
methods for evaluating these symptoms in the field and in
controlled experiments (15,20,25,27,30,32,33,39,47,53).
Methods for quantifying foliar symptoms (and signs) induced
by many pathogens have been standardized and widely
accepted (22,26,27). In contrast, few standardized methods for
symptom quantification have been widely adopted in the air
pollution field (15), although the need for standardization has
been recognized (20). For example, the methods of Phillips et al
(41), Benoit et al (5), and Usher and Williams (56) have little in
common even though all evaluate visible foliar injury on white
pine in response to pollutants.

Here we evaluate some quantitative methods for evaluating
foliar symptoms and for aggregating data on multiple visible
symptoms into composite indices of injury. Although the
examples presented concern symptoms induced by air
pollution, the problems discussed are generally relevant to
pathologists involved in disease assessment. Others have
discussed methods of combining symptom data from individual
plants into indices reflecting injury at the population level, as in
the McKinney (36) index as described by Horsfall and Cowling
(23). We are concerned here with injury indices created by
combining data on several symptoms into one score to reflect
injury to a given sample unit.
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We discuss when to use indices, methods of quantifying
symptom data, and techniques for standardizing, weighting,
and combining symptoms into synthetic indices. Examples are
drawn from our field data on white pine (Pinus strobus L.) in
Indiana, from hypothetical data, and from the literature.
Hypothetical data are used when they allow us to illustrate the
effect of particular data manipulations on resultant indices
more clearly than real data would. We point out strengths and
weaknesses of various approaches to index construction and
provide a series of recommendations. The power of indices
depends to a large extent on the quality of reported data on
symptomatology, and we identify specific areas from both
experimental and field research where improved statistical
reporting would promote the accuracy of foliar symptom
analyses.

The pros and cons of indices

When injury is manifested by more than one foliar symptom
(as in ozone effects on white pine foliage [ 10]), synthetic indices
(composites of symptoms) are potentially useful. Such indices
may indicate general pollution stress, levels or impacts of a
particular pollutant, or growth effects. The strengths of
synthetic indices relative to symptom-by-symptom analyses
include: 1) reduction of “noise” associated with individual
symptoms by emphasis on common signals among symptoms,
2) mathematical integration of information provided by each
symptom into a smoothed and interpretable expression of each
entity’s (individual, population) position relative to other
entities on a pollutant or effects gradient, and 3) summarization
of symptom data into a single variable, facilitating analysis in
relation to other variables. However, symptom-by-symptom
analyses are also often useful, as they enable one to examine the
relationship of each symptom to dose or to growth, which may
be helpful in deciding which symptoms are the most reliable
indicators. Also, the total information on symptomatology is
retained; such information may be particularly useful where
complex gradients involving more than one pollutant exist and
where, consequently, an index to generalized “air pollution
damage” may oversimplify and obscure patterns of interest.
Hence, it is useful, if not essential, to collect data on individual
symptoms, even when the data will be combined into a
composite index of injury.

Data collection and standardization

Other workers have dealt with physiological, chemical, and
visual approaches for assessing the influence of air pollutants
on vegetation (19,20,25,30,33). Here we mention briefly four
areas directly relevant to collecting data on the visible foliar
injury component of air pollution’s influence on vegetation. We
assume that symptoms have been carefully chosen to represent
effects of the target pollutant(s).

Level of resolution. At what level should symptoms be
measured—the level of the individual leaf, the fascicle (in pines),
the branch, the tree, or the population? This decision involves a
compromise among replicability, time, and the goals of the
research project. The level should be fine enough to allow rapid
and repeatable visual assessment, yet coarse enough for
efficient data collection and summarization, and at or below the
level at which an estimate of variance is desired. As is true
throughout this paper, the best method depends on the goal of



the study. No general recommendation is possible concerning
choice of level of resolution, save that the resolution level of the
given hypotheses or questions should always be examined (2).

Individual symptoms or composites. Although most
investigators record data on individual symptoms, some
combine symptoms into a composite index at the data
collecting stage, recording only the composite score (Table 1).
Component ratings cannot be derived from a composite rating.
Recording data on individual symptoms, however, allows
maximum flexibility for subsequent analyses, and composite
indices can be constructed later.

Continuous or discrete. The investigator must decide
whether to collect data as continuous data or in discrete classes.
Although continuous data provide maximum flexibility for
subsequent manipulation, class data are collected faster and do
not pretend to more accuracy than is realistically achievable.
Further, analyses of classed data generally yield results similar
to those of continuous data, providing the classes are not too
broad (49). For most purposes, therefore, we advocate the use
of carefully chosen classes.

Definition of classes. The type of classes into which data will
be grouped influences the reliability and reproducibility of the
data and can influence the weight given to different disease
levels. Qualitative disease categories (slight to moderate to
heavy), unless defined in quantitative terms as in Miller (38),
suffer from subjectivity and lack of reproducibility between
observers or between days for a given observer (7).

A common alternative to qualitative categories (15) is equal-
sized classes of percent cover of symptoms (e.g., 0~5%, 5-10%,

' »U'nélear
Yes
Unclear

etc.). A drawback to this method is that accuracy of visual
discrimination among disease levels is not always equal at all
levels of disease (23,27,42). Discrimination is most acute at
relatively high and low disease percentages and least acute in the
mid ranges. (There are exceptions to this generalization,
however [17].) Equal-sized classes also give equal weight to all
parts of the disease scale, which may or may not be desirable,
depending on the linearity of the relationship between disease
levels and dose or biological effects.

In general, we advocate the use of classes approximating an
arc sine-square root transformation of proportion data (Fig. 1),
or scales that are logarithmic at both tails (21,22). Such classes
spread values in the distribution tails, thus increasing sensitivity
to high and low disease levels, and contract those in the middle,
allowing for broader categories in the mid ranges where visual
discrimination between disease increments is more difficult.
The arc sine-square root (angular) transformation also
homogenizes variances of proportion data, a necessary
consideration for statistical testing (50). Zero disease should be
assigned to its own class when the absence of disease deserves
weight.

Constructing an index

The method used to construct indices of disease severity can
influence conclusions about the severity of disease in trees or
populations, and indices should be carefully designed to most
faithfully represent disease severity levels. A wide variety of
indices reflecting foliar injury has been used in published
studies; Table 1 lists examples. Three indices of air pollution

index, i.e., affirmatives for the first five characteristics,

- Individual
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scored to equal multiplicative, Subjective
onotomc" quantitatively? weight? or intermediate? categories?
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injury to white pine foliage (5,52,56) were compared using data
on white pine foliage from populations at the Indiana Dunes
National Lakeshore (3). Application of the three indices to
these foliar data resulted in markedly differing distributions of
apparent disease severity (3) (Fig. 2).

The discussion that follows applies when injury is assessed as
percent area (expressed continuously or in classes) of the study
unit, such as a leaf, affected by each symptom and when the goal
is to combine data on more than one symptom into a composite
index. For convenience, individual leaves are considered as
sample units, although the principles apply to sample units at
any level of resolution. The discussion does not apply to the
problems of combining data from individual leaves into a
composite index of plant injury.

Standardizing symptoms. Initially, component symptoms
should be scaled to have equal means and equal variances, thus
giving equal weight to each symptom. If desired, differential
weights can be applied later. It makes little sense to add
variables such as necrosis length (0—10 cm) and percent needle
retention (0—1009%) into an index without rescaling them, as the
variables with the larger numeric values will overpower those
with the smaller.

Symptoms can be scaled to equal weight and variability by:

1. Expressing each symptom as a standard normal variate in
units of standard deviations. This is done by standardizing each
symptom by its mean and standard deviation in the relevant
population: standardized symptom = (xi — x)/s, where x =
symptom score for individual i, X = sample mean of symptom
scores, and s = sample standard deviation of symptom scores.
This converts each score into a standard normal variate with x =
Oand s= 1.
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Fig. 1. Arc sine-square root function. (A) Relationship between
observed values, x, expressed as proportions (= percent/100) and the
arc sine-square root transformation of x. (B) Cover classes based on

cover percentages transformed by arc sine-square root (percent data
are converted to proportions before transformation).
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2. Dividing each symptom into discrete classes covering the
same range, e.g., 1-5 reflecting increasing injury. By using the
same classes for each symptom (56), all symptoms are expressed
in comparable units and scaled to similar ranges and variability.
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Fig. 2. Disease index scores for eastern white pine (Pinus strobus) at
Indiana Dunes National Lakeshore (3). Symptoms of air pollution
injury to needles (tip necrosis, chlorotic mottle, needle retention, and
needle length) were evaluated for 96 trees. For each individual,
symptoms were combined into injury indices using three methods—
those of Stolte and Bennett (52), Usher and Williams (56), and Benoit et
al (5). The distribution of disease severity levels among trees, as
calculated by the three methods, is plotted for each injury index. The
choice of symptoms and the method of combining symptoms into
disease scores influenced conclusions about the severity of disease
attributable to air pollution at Indiana Dunes National Lakeshore.



This approach is less appropriate for continuous data than
transforming to a standard normal variate.

Weighting symptoms. After being standardized, symptoms
may be weighted differentially, using, for example, a criterion
of symptom reliability or sensitivity. If a good basis for
weighting is lacking, it is best to use equal weights. When the
index will consist of a large number of component symptoms
and the possible differential weights are relatively small, the use
of weights is unlikely to make a significant difference in the
relative placements of sample units (49). In such cases, it is
simplest to use equal weights.

Weighting by response to pollutants. If the necessary data are
available, symptoms can be weighted in proportion to their
sensitivity to pollution, their indicator value for growth, or any
parameter being indexed by foliar condition. Figure 3A shows
the effect of weighting symptoms differentially by response to
pollutant dose; the sigmoid curve shapes and positions are
hypothetical, but such responses to dose have been observed
(18). In this example, needle loss is expressed at lower doses
than needle necrosis and hence might be considered a more
sensitive indicator of pollution presence, although not
necessarily providing much information about the level of
pollution, as the symptom becomes insensitive at higher doses.
Figure 3B shows the indices resulting from summing these two
symptoms, weighted and unweighted. In the base case, each
symptom is weighted equally and the index increases more or
less linearly across the dose gradient. In another case, needle
loss is weighted twice as heavily as needle necrosis, as might be
done if one were interested primarily in the response to low
doses. This weighting exaggerates the increase at lower doses
and renders the index insensitive at higher pollutant doses. In
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Fig. 3. (A) Hypothetical response of two symptoms—percent loss of
needles and percent needle necrosis—across a pollutant dose gradient.
(B) Disease indices as a function of pollutant dose. Indices derived by
summing percent needle loss and percent needle necrosis: [] =
symptoms given equal weight, A = needle loss given twice the weight of
needle necrosis, 0 = needle necrosis given twice the weight of needle
loss.

the final case, needle necrosis (which is not manifested until
higher dose levels than needle retention) is weighted twice as
heavily as needle loss. The resultant index is slightly insensitive
at low doses but is subsequently fairly linear, even at the highest
doses. The decision as to whether and how to weight symptoms
by their sensitivity to pollutant dose depends on the purpose(s)
of the investigation. Unless the study is designed to either
emphasize or deemphasize responses to low levels of pollution,
anindex withalinear response to the dose gradient is generally
desirable, as it is more straightforward statistically and
conceptually. Since our comparisons show that differential
weighting by symptom sensitivity reduces linearity, such
weighting generally should not be used.

This example also demonstrates the need for accurate,
quantitative data on symptom expression vs. dose for use in
deriving differential weights for symptoms. We searched the
literature on foliar responses of Pinus strobus to air pollution
for data (mean and variance or regressions) on symptom
expression vs. dose, hoping to use such data to derive
biologically based weights. However, none of the many
published studies of symptoms induced in P. strobus by air
pollution provided the quantitative data needed to derive a
sound, response-based weighting scheme. Future laboratory
and field studies of the relationships of disease symptomatology
to dose (biotic or abiotic causes) should report results in
quantitative terms, including regressions or means and
variances at different estimated doses, to increase the usefulness
of study results.

In the hypothetical situation described, one symptom did not
constrain the expression of another. In many cases, symptoms
may be interdependent biologically and/ or statistically. When
constructed with groups of interrelated variables, the index is
likely to have a nonlinear response to dose, as are the responses
of individual symptoms. For example, assume P. strobus
needles are being scored for percent of needle necrotic, percent
chlorotic, and percent flecked (Fig. 4). The hypothetical data
show that as needle necrosis and chlorosis increase, the percent
of needle not necrotic or chlorotic decreases; thus, the percent
of needle flecked must decrease eventually. Hence, an index
constructed by summing the percent occurrences of each
symptom for a given dose level is uninformative (the response
curveis flat) at higher disease levels (Fig. 4). This nonlinearity in
symptom expression vs. dose when symptoms are non-
independent also may explain, in part, why linear correlations
between individual symptoms and dose may be weak,
particularly when the dose gradient is long. If response is always
studied at low doses, these problems are not severe, but for
maximum utility an index should increase continuously with
increases in dose. Quantitative data on these types of
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Fig. 4. Hypothetical response of three symptoms (needle necrosis,
needle chlorosis, and chlorotic flecking), each expressed as percent of
needle length, across a pollutant dose gradient.
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interactions between symptoms are needed to choose, interpret,
and weight symptoms with greater understanding.

Weighting by reliability. For most purposes, a reliable
symptom may be defined as one that shows low variability at a
given dose, yet varies over the range of doses. Weights may be
based on symptom reliability, weighting most heavily those
symptoms least variable at a given dose. Symptom variability is
affected by the degree of genetic heterogeneity in the population
and by the specificity of the symptom to the pollutant(s) of
concern. For some studies, as in genetic variability in pollution
tolerance where within-population variance in symptom
expression is just as interesting as between-population variance,
one may wish to weight symptoms that vary within populations
if those symptoms are known to be sensitive indicators of
genetic variability in pollution tolerance. Generally, however,
the most useful symptoms are those that are most uniformly
expressed in individual plants and consistently present at a
given pollution level, and therefore least variable within
populations, yet vary (with dose) among populations. Heavily
weighting a symptom that is consistent within populations but
varies little among populations differing in dose has little effect
on differences in population level index scores because the
symptom will contribute equally to the score for each
population.

Symptom reliability can be estimated in at least three ways,
depending on the available data:

1. When only minimal dose data are available (as is common
in field studies of air pollution effects), reliability can be
estimated by within-population variability in symptom
expression. Rather than weighting by the within-population
variance, whose size depends on the units of measurement, it is
better to weight by the inverse of the coefficient of variation
(C.V. = standard deviation + mean), which expresses the
variability as a proportion of the mean.

2. When dose data are available, reliability can be estimated
by the observed coefficient of determination (r*) for the
regression of symptom scores on dose, which indicates the
proportion of variance in symptom scores that is explained by
the regression model.

3. Finally, weights can be derived from published reliability
data (coefficients of determination or coefficients of variation)
from either field or laboratory studies. Unfortunately, these
results have seldom been published and are lacking even for P.
strobus, a species whose visible symptoms in response to air
pollution have been studied frequently.

Weighting with PCA. Symptoms may also be weighted using
a multivariate approach, such as principal components analysis
(PCA). (Useful introductions to PCA are found in Sneath and
Sokal [49] and Greig-Smith [14].) In PCA, all symptoms are
used simultaneously to provide information about the
placement of populations (or other sample units) on a gradient
of covarying symptoms. In effect, this approach weights each

Table 2. Hypothetical data used to demonstrate effects of
additive, multiplicative, and intermediate methods of dex
construction on behavior of resultant index across a pol
dose gradient” .

Symptoms a-d?

Chlorosis Necrosis Needle
Site*  length (a)>  length (b) retention (c)‘
1 100 100 100 .
2 130 100 70
3 160 100 40
4 190 100 10

“Levels of chlorosis length and needle retention change 11

across dose gradient. '
* Pollutant dose increases across sites 1-4.
¥ See Figure 5. | .
* All scores standardized to mean = 100, standard dev1at10n 30.
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symptom in proportion to its shared covariance with other
symptoms. Assuming that the symptoms are all responsive to
pollution and no other single cause, the strongest common
signal (covariance) should be pollution-induced. If so, the first
principal component will represent most of the pollution-
related variation in foliage condition. PCA combines the
weighted symptoms additively to give an index score for each
population. Unanticipated gradients beyond the known
pollutant(s) of concern may influence the data; if so, PCA
expresses these symptom gradients on subsequent axes. Thus,
PCA can be used to study interrelationships among symptoms
but, like any other method of index construction, only leads to
an index indicative of pollutant dosage when the symptoms
have been carefully chosen.

Weighting and collinearity. Foliar symptoms may be
intercorrelated (collinear), and when collinear symptoms are
included in an index, the cause of the collinearity is implicitly
given weight proportional to the redundancy of the symptoms.
Therefore, weighting the symptoms equally will not weight their
underlying causes equally, and to avoid giving excess weight to
causes other than pollution, correlations between symptoms
and their possible causes must be examined. When correlations
arise because the symptoms result from the same air pollutant,
it is reasonable to include the collinear symptoms in an index.
Indeed, part of the strength of an index in reducing noise comes
from the redundancy with which the pollution signal is
expressed in the symptoms. (However, including two
necessarily related symptoms, such as needle length in
centimeters and needle length in inches, only serves to double
the weight given to factors influencing needle length.) Because
collinear symptoms presumably provide a common signal
emphasizing air pollution effects, their inclusion gives weight to
the pollutant in constructing the index. If, on the other hand, an
index is desired in which each symptom contributes only the
information that it alone provides, one can remove the
collinearity by using weights derived from the correlation
structure of the data (40).

Combining symptoms into an index

Once standardized and weighted, component symptoms are
combined into anindex. (With PCA, combining and weighting
are performed simultaneously.) Symptoms can be combined
additively or multiplicatively. For an additive index, scores for
symptoms positively correlated with pollution are added and
scores for symptoms negatively correlated are subtracted (5,56).
PCA is another additive approach. In a multiplicative index,
the product of symptoms positively correlated with dose is
divided by the product of symptoms negatively correlated (52).
An intermediate method divides the sum of the components
positively correlated with pollution by the sum of the
components negatively correlated.

A hypothetical data set that demonstrates differences among
additive, intermediate, and multiplicative methods of
constructing indices is presented in Table 2. The data are
idealized; two constants allow effects of manipulating the
remaining variables to be seen clearly, and the remaining two
variables show simple linear behavior across a hypothetical
dose gradient, allowing behavior of the alternative indices to be
clearly demonstrated. All three indices responded linearly to a
linear change in one symptom across the dose gradient. When
two symptoms changed linearly across the dose gradient,
however, the responses of the indices differed (Table 2, Fig. 5).
The additive index (and PCA) responded linearly to the linear
change in two symptoms, the multiplicative index showed a
markedly nonlinear response, and the intermediate index
performed intermediately. Because an index responding
linearly to linear changes in symptoms has desirable statistical
properties and is more straightforward than one responding
nonlinearly, we recommend using an additive index.

To be most interpretable, an index should be scaled to have a
known maximum and minimum. A pollution damage index
with a minimum of zero is desirable logically and can be derived



by solving the index equation for the zero disease case. This
gives a constant that can be added to or subtracted from index
scores to bring them to zero minimum. Ideally, an index should
also peak at the maximum possible disease level, but this may
not be possible, depending on the type of index.

A final problem concerns the level of resolution at which
indices should be calculated. Assume that the data consist of
symptoms scored on leaves nested within individuals within
populations and that the main goal is to compare populations.
We need an index score for each population. Because knowing
the variance within populations is helpful, index scores should
be calculated for each individual. A population-level score
calculated as the average of index scores for individuals should
differ little from a population-level score calculated from the
average symptom scores for individual leaves. With PCA,
however, the level at which the index values are calculated is
more important.

To determine the effect of level of resolution and alternative
symptom weightings on indices, we used data collected by
Holcomb Research Institute during late May 1984 on foliar
symptoms of P. strobus. Data were collected on needles from
lower branches of trees in nine populations in Indiana differing
from one another in presumed pollutant dose (primarily SO,
and Os; see description of populations in Usher and Williams
[56]). The following symptoms of injury by these air pollutants
were scored (after Costonis [8], Costonis and Sinclair [10], and
Usher and Williams [56]): length of needle chlorosis (mm),
length of needle necrosis (mm), percent retention of 2-year-old
needles, and chlorotic mottle and flecking (1-5 = none to
severe). Chlorotic mottle was scored in qualitative categories to
allow comparison with an earlier study of the same populations
when those categoreis were used (56). Percent needle retention
was converted to proportions and was transformed by arc
sine-square root before analyses. Total sample size was 234
trees, the number of trees per site ranging from 10 to 46.

Four types of indices that seemed reasonable were calculated:
1) additive using symptoms expressed as standard normal
variates, as described previously; 2) additive using the same
standardized symptoms but with each symptom weighted by

additive

intermediate

multiplicative

Index Score

L
1 2 3 4
Sites

Fig. 5. Response of three hypothetical indices of foliar symptoms to
increasing pollutant dose across four sites. Four symptoms (a~d)
composing each index were scaled to equal means before being
combined into indices. Additive index = a + b + ¢ + d, intermediate
index = (a + b)/(c + d), multiplicative index = (a - b)/(c " d).

the inverse of its within-population coefficient of variation; 3)
additive with levels of symptoms assigned to numeric classes, as
described previously (56); and 4) based on PCA. Each index
was computed two ways for each site—at the individual level
and at the population level (the population’s average score for
each symptom was used in the latter). Relationships between
indices calculated at the individual and at the population level
were examined using both parametric and nonparametric
correlation procedures, as the distribution of index scores was
not always normal. In all types except PCA, the correlations
between the individual and population level approaches were
quite high; the level at which the index was calculated did not
significantly alter the outcomes (Table 3). For PCA, on the
other hand, the correlation between levels, while still
statistically significant (P <0.05), was not as high, probably
because PCA is a covariance-based technique while the others
are mean-based. When PCA is conducted using data on
individual trees, within-population covariation influences the
analysis. The covariance structure among the symptoms of
individuals differed from the covariance structure among
population averages of symptoms. When the primary goal is to
compare populations, it is normally preferable to use PCA on
population average symptoms rather than on individual tree
symptoms because the within-population variance is largely
unrelated to differences in pollutant dose among populations.
When the goal is to compare individuals within populations,
however, it may be desirable to use PCA on individuals rather
than on populations.

Using the same data set, we calculated correlation
coefficients among the four index types, all computed at the
population level (Table 4). Again, all correlations were quite
high, suggesting that none of the indices introduced significant
biases or distortions into the stand patterns. We have no
independent means of evaluating each index, so judging which
(if any) was superior is difficult. Each was constructed by a
reasonable method. PCA, however, may be preferable to the
other three methods on the grounds of objectivity, since the
scientist makes no decisions on weights for symptoms.
PCA also handles well the collinearity likely to be found
among foliar symptoms when several symptoms are
produced by a given pollutant. Most packages of statistical
software include routines for performing PCA, making it
widely available.

Validating an index

Once an index has been constructed, its reliability should be
checked. Ideally, the pattern suggested by the index should be
compared with dose or such biological effects as growth
reduction to determine if and how the index is related to these.
If air pollution is the strongest influence on the symptoms
composing the index, the relationship between injury and dose,
as reflected in the index, should be strong. However, because
good dose estimates are rarely available (particularly in field

3 earson’s product-moment correlations (r) and
Spearman’s rank correlations (r) between individual- and
pulation-level indices

S r rS
1 ardized® symptoms 0.992 0.950
* - standardized symptom;) 0.990  0.967
categorized® symptoms 0.979 0.975
ulation level) 0.909 0.783

1 by mean and standard deviation of symptom over
pulations.

stand coefficient of variation of symptom i.
ymptom assigned to numeric classes of equal

nalysis.
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Table 4. Spearman’s rank ¢ rrelati

Symptoms .

1: Necrosis length

2: Flecking ,

3 Chlotosxs length

4: Arcsin™ “needle rete it
Indices® ~

X standardized symp m;
2: % (C.V.; - standardized s mp;cm
3: % categorized symptoms
4: PCA
IN=9;*= P<O. 05
*Standardized symptoms = sXandardnz
within-stand coefficient of variation of symptom
and range; PCA = prmcxpal componems analy i

studies), less direct approaches must be used. If the symptoms
are reliable indicators of a single pollutant of concern, the
relationships among the symptoms should be similar across
years even when dose varies. Hence, the reliability of
component symptoms can be checked by comparing the
symptom correlation matrix for one year with that of another
year. The Mantel test (12,34) can be used to compare two
correlation matrices.

The reliability of indices can also be inferred by examining
placement of populations relative to one another on the injury
index gradient. If the sites do not change significantly relative to
each other in year-to-year dose, and if the symptoms involved
are faithful reflectors of air quality, positions of populations
relative to one another on the injury index gradient should not
change greatly.

Conclusions

An index of plant injury levels can be useful in particular
applications because it allows the simultaneous use of all
information on the plant’s symptoms to assess the plant’s
condition. Further, an index mathematically integrates a mass
of data that may be hard to digest at lower levels of
summarization, and it can extract a common signal from
_symptoms that may be somewhat noisy individually. However,
recording data on individual symptoms is more useful than
combining symptom data at the data-gathering stage (as is
sometimes done; Table 1) because individual symptoms may be
helpful in certain analyses.

An ideal index: 1) uses equal weights for component
symptoms or carefully chosen differential weights, 2) does not
use subjective (qualitative) symptom categorization, 3) is
additive, 4) has its minimum at zero and maximum at the
highest possible disease level, and 5) has a monotonic, nearly
linear relationship to dose across the widest possible pollution
gradient. Published indices vary widely in method of
construction and in the degree to which they meet these criteria
(Table 1).

To promote the derivation of biologically sound indices and
to make foliar scoring as useful as possible, basic data of two
types are needed. First, data are needed on quantitative
relationships between symptoms and pollutant dose, growth, or
other parameters to which the indices are designed to relate (a
truism, yet it seems to have been slighted). Estimates of the
mean and variance of each symptom for each level of dose (or
regression statistics for the relationship of symptoms to dose)
are needed for choosing component symptoms as well as for
deriving differential weights for symptoms. It is clear from
published studies that much of the required data exist, yet the
basic statistics are rarely included in publications. Second, data
are needed on the functional dependencies between various
symptoms—the extent to which expression of one symptom
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constrains the expression of another. These data are needed to
design an index that is as linear and monotonic across a
pollution gradient as possible.

In general, we recommend building indices either by using the
sum of standardized symptoms weighted by their reliability or
by using PCA, which in effect standardizes symptoms, weights
them in proportion to their shared covariance with other
symptoms, and sums them. PCA has an advantage over the
other approach in that it uses the information from all
symptoms to extract the strongest common signal. Another
advantage is that PCA may reveal hitherto unexpected
patterns in the data, e.g., it may extract a second axis of
variation related to a second pollutant or to another driving
factor.

In summary, indices of injury to foliage can be useful, but
their power is limited by our understanding of the influence of
pollutants on foliage and of the influence of foliar condition on
growth. Indices should be constructed with attention to the
mathematical properties, reliability, and interactions of the
component symptoms.
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