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Interpreting ELISA Data
and Establishing the POSitive-Negative Threshold

Ten years ago, Voller et al (6) and
Clark and Adams (3) introduced enzyme-
linked immunosorbent assay (ELISA) to
plant pathology. Since then, ELISA has
been used to assay for a great variety of
plant viruses and several other plant
pathogens. Few of the resulting publica-
tions, however, have dealt with the
problems of interpreting ELISA data (2).
Qur own experiences in interpreting and
analyzing ELISA data led to this article,
in which we discuss the setting of
positive-negative ELISA thresholds,
some pitfalls that can lead to erroneous
interpretation of ELISA data, and some
recent developments in analyzing ELISA
data.

The Problem of Test Thresholds

The setting of test thresholds is a
crucial feature in the design, verification,
and routine use of an assay. While this
appears to be well recognized in the
clinical (human) laboratory use of
ELISA and similar assays, we believe it is
not as well recognized in the plant
sciences. The medical literature contains
many examples of careful attention to the
problem of threshold choice—an obvious
necessity when dealing with life-
threatening illnesses. In the plant
sciences, however, false negatives and
false positives do not have such serious
consequences and ELISA data analysis
has not received such careful attention.
Granted, a false positive in a test of, for
example, potato ring rot, with zero
tolerance of disease, could mean a large,
unnecessary financial loss to a grower. In
most cases, however, a false negative or
false positive simply yields erroneous
data, which tend to be ignored or, worse
yet, incorporated into the final results.

To obtain an idea of how other plant
pathologists interpret their data, we sur-
veyed PLANT DISEASE, Plant Pathology,
Annals of Applied Biology, and Journal
of General Virology for ELISA-related
papers published during the 2 years prior
to October 1985. We found 81 such
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articles and determined: 1) the method
used to set threshold values, 2) the
absorbance range and number of healthy
standards used, 3) the replication of
experiments and samples, and 4) compari-
son of ELISA with other assay methods.

The survey revealed many opportunities
for improving test reporting practices.
Over one-half of the authors did not state
how they determined the positive-
negative threshold (Table 1). Over three-
fourths of the articles did not give the
absorbance range and the number of
healthy standards, about two-thirds did
not state if experiments were replicated,
and three-fourths did not state if samples

Table 1. Results of 2-year (1984 and
1985) survey of four journals® for
methods used to set ELISA threshold
values

Number
Method of papers
Not stated” 49
Visual 7
2x Negative mean 10
3x Negative mean 5
Negative mean + 25 2
Negative mean + 3s 5
Negative mean + 4s 1
Other 2
Total 81

"PLANT Diseask, Plant Pathology,
Annals of Applied Biology, and
Journal of General Virology.

*Some articles cited another article for
materials and methods.

were replicated (Table 2). Approximately
one-half of the papers reported use of an
additional method to evaluate the test
plants for comparison with ELISA
(Table 3).

Using a number of different individuals
for the negative standards is important to
ensure adequate coverage of the possible
range of healthy values, and the cultivar,
rootstock, age, growing conditions, and
tissue type of the standards should be
matched to the unknown test samples.
The range of the healthy background
absorbance interval should be known.
Not all ELISA systems are equivalent
when it comes to false positives and false
negatives; systems with very low
background levels (e.g., <0.l absorbance
unit) usually yield fewer questionable
samples than systems with higher
backgrounds. Replication of samples is
also important.

Use of Histograms

A useful way to look at ELISA data is
in the form of a histogram (frequency
distribution). The process of constructing
a histogram from ELISA data is straight-
forward. One chooses a convenient
interval (generally 0.02 or 0.05 absorbance
unit), counts the number of data points
falling within each interval, and plots the
frequency distribution. For even easier
construction of a histogram, some
ELISA optical readers can be interfaced
with a microcomputer via an RS-232
port, which allows direct input of data
from the ELISA reader into a software
package, e.g., Lotus 1-2-3. From there, a

Table 2. Absorbance range, number of healthy controls, and replication of experiments and

samples reported in 81 ELISA-related articles®

Not stated
Stated or not done
Item (no.) (no.)
Absorbance range of healthy controls 18 63
Number of healthy controls 9° 72
Experiments replicated 32 49
Samples replicated within experiments 21 60

* Published in PLANT DiseASE, Plant Pathology, Annals of Applied Biology. or Journal of

General Virology during 1984 and 1985.

"Five articles reported fewer than five controls; three, five to 10; and one, more than 10.



simple program can produce a histogram
automatically.

Figure 1 is a histogram of ELISA
results for potato virus S in plantlets
derived from 90 characterized potato
tissue cultures. Thirty-one assay points
(vertical axis) were found in the
absorbance interval 0.05-0.10 (horizontal
axis), 10 assay points in the 0.10-0.15
interval, and so on. These results
represent an apparently satisfactory
assay. The distribution of data is
bimodal, with the two populations
separated by a large interval of absorbance
units. The population on the left contains
all the negative samples, and the
population on the right contains all the
positive samples. No false positives or
false negatives were displayed in repeated
ELISA tests with these samples. The
interpretation of this data set is
straightforward. These data would be
difficult to interpret, however, if known
negative or known positive samples were
absent and if the positive-negative
threshold for the test was not known.

We routinely use histograms to
examine our ELISA data, and we find
them to be useful devices for quickly
recognizing many features of a data set.
For example, during construction and
testing of a new plant virus ELISA, a
histogram of the test data often displays
negative and positive distributions like
those in Figure 1 when the test is
challenged with approximately equal
numbers of known positives and
negatives. If the positive and negative
populations are not well separated by a
reasonable absorbance interval, we can
expect interpretation problems in
applying the ELISA test to such samples.
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Samples from virus-tested programs,
especially elite or nuclear stocks, give
data that produce histograms like Figure
2, which shows data from a tobacco
ringspot virus ELISA with nursery stock
blueberry bud samples.

An Example

Histograms by themselves do not solve
the problem of setting thresholds. Figure
3 shows the results of three successive
years of ELISA testing for the presence
of Prunus necrotic ringspot virus in a
block of 194 sour cherry trees. All three
components of Figure 3—A, B, and C—
show compact, dense distributions of
positives and negatives separated by
about 1.2 absorbance units. Depending
on the year, a considerable number of
samples lie between these peaks. The
negative population of individuals in an

35

ELISA histogram is not always normally
distributed, i.e., in a bell-shaped curve,
but instead may be skewed to the right.
This “tail” area has a high potential for
containing both false negatives and false
positives, depending on how the data are
interpreted.

The ELISA values for three problematic
trees falling to the right of the negative
population in the 1983 assay (Fig. 3A)
were similar (Table 4), with a range above
twice the mean of the healthy controls
(2x=0.12 absorbance unit, 1983). By the
standards commonly used in plant
ELISA (2x or x + 3 standard deviations
[s] of healthy control samples), these
trees would be rated positive. Tree 8-3
had much higher readings in 1984 and
1985 thanin 1983 (Table 4). Tree 8-4 also
had a “positive” reading in 1983 but had
readings lower than 2x—and even lower
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Fig. 1. Histogram of ELISA results for potato virus S in plantlets derived from 90
characterized potato tissue cultures. The bimodal distribution of data is ideal, with alarge
interval of absorbance separating healthy (negative) plants on the left and diseased

(positive) plants on the right.
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Fig. 2. Histogram of ELISA results for tobacco ringspot virus in elite blueberry stocks,
representing the best source of healthy plants. All absorbance values are clustered near

zero.
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Fig. 3. Histograms of ELISA results for Prunus necrotic ringspot virus in 194 sour cherry
trees tested in (A) 1983, (B) 1984, and (C) 1985; each histogram contains 388 values
because ELISA plate wells were run in duplicate. Arrows indicate the 2x, 4x, and 6x of the
10 negative control samples.
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than X + 3s—in 1984 and 1985. Was the
virus missed when tree 8-4 was sampled
in 1984 and 1985, or was the 1983 reading
interpreted incorrectly? The ELISA
results for tree 6-7 are similarly
puzzling—positive in 1983 and again in
1984, seemingly corroborating the 1983
interpretation, -but definitely negative
in 1985.

These three trees were not the only
ones with data that moved in and out of
positive and negative populations over
the 3-year period. In assays of the 194
trees, the ELISA values were grouped
into four categories: A) <2Xx of healthy
controls, B) 2x to <4x, C) 4x to <6%x,
and D) =6Xx. Category A represents
those values below the commonly used
negative threshold. The X + 3s
(Chebychev’s equivalent) is also becoming
popular for use as a threshold. In this
data set, however, the two values (2x and
x + 3s) are very similar. Category D
represents those values that are strong
positives; category C, those values that
can be considered low positives; and
category B, those values that may be very
low positives or unusually high negatives.
Category B may contain a higher
percentage of false positives or false
negatives, depending on how the data are
interpreted, and is often in the tail region
of the negative population.

The ELISA readings of more than 100
trees behaved in a very straightforward
manner, remaining for all 3 years <2x
for 24 trees and = 6Xx for 84 trees. The
values for 52 other trees also fit an
understandable pattern, going from
negative to positive categories over the
3-year period. Results were less certainin
some instances, however. For example,
eight trees had category D values (= 6X)
in 1983 but category A values (<2X) in
both 1984 and 1985. Were the 1983
readings a mistake, due perhaps to
contamination during the ELISA process,
or was the virus simply missed in 1984
and 1985 because of sampling errors? The
latter is probably true, since the 1983
absorbance readings were so high.
Similarly, another eight trees tested as
very low positives (category B) in 1983,




then very negative (category A) in 1984
and 1985. Were these trees negatives or
positives? They would be considered
positives if just the 1983 data were used,
but when they failed to yield positive
values in successive years, they began to
look like negatives.

New Methods for Setting
Positive-Negative Thresholds

Recently, Kramer et al (5) suggested
that discriminate analysis could be a
better method than the commonly used
ones that set arbitrary limits (e.g., 2x and
X + 3s) for determining positive-negative
thresholds in ELISA tests. They reported
on the use of ELISA to test human sera
for levels of antimeasles antibody. They
used the SPSS statistical package (4) to
do discriminate analysis of the ELISA
data. After establishing correlation
coefficients among ELISA, indirect
immunofluorescence, and hemagglutinin
inhibition values, they calculated a value
called the discriminate function to use as
the positive-negative threshold for
ELISA. They then compared the
discriminate function value with the
usual cutoff values, e.g., 2x of healthy,
3x, and x + 2, 35, and 4s.

We applied this technique to ELISA
for potato leafroll virus (PLRYV) in
potato sprouts, with visual plant
symptoms as the independent assay. This
data set (supplied by Robert Goth,
USDA, Beltsville, MD) consisted of 297
individual tubers from which the sprouts
had been tested twice by ELISA (Fig. 4).
The tubers were grown in a controlled
greenhouse and observed twice for
symptoms. We used the SPSS package
for discriminate analysis (Wilk’s inter-
active method). We converted the ELISA
values to corrected absorbance interval
values (CORROD, or Asosam reading
minus the x of healthy control plants,
minus a correction factor, which we
arbitrarily set at unity). We also
calculated the discriminate function
LnCORROD. This transformation was
done following Kramer et al (5), in case
the data did not conform to normal
distribution. After calculating the two
discriminate function values for the
PLRYV data set, we constructed a table of
comparative ELISA positive-negative
thresholds and also calculated the
percentage of false-positive and false-
negative values for ELISA as determined
by the independent visual test for
symptoms (Table 5).

Table 5 summarizes the positive-
negative threshold in terms of its value,
the method used to set the threshold, and
the percentage of false positives and false
negatives determined by visual symptoms.
As expected, the threshold for positives
set at >2Xx gave the lowest number of
false negatives (0%) and a relatively high
number of false positives (9.09%). The
number of false negatives increased and
that of false positives decreased as

thresholds were selected at higher
absorbance levels. The discriminate
analysis resulted in thresholds of
0.12-0.13, giving about 9-119% false
negatives and about 2% false positives.

The use of discriminate analysis for
this data set appears to have been of no
benefit. The attempt was not cost-
effective because of the expense of
computer time. Also, the results were not
substantially better than those produced
by hand methods with a calculator.

The PLRV-infected sprout data set
was collected and interpreted before we
knew about discriminate analysis as a
possible method for setting the positive-
negative threshold. The use of the data is
what determined the method for setting
the threshold. Picking sample tubers
negative for PLRV was important, and a
low absorbance interval threshold was
chosen that apparently gave no false
negatives.

Burrows and Barnett (1) have proposed
another way to deal with interpretation
of ELISA data: converting the dose

response curve (absorbance unit antigen
concentration) to a curve of detection
rate vs. antigen concentration. This
suggestion is based on an elegant but
complicated analysis of detection rules
by Burrows and merits further study and
testing with plant systems.

Conclusions and Guidelines

Our examples and discussion suggest
that there are no easy answers for setting
positive-negative thresholds in plant
ELISA. The most widely used method in
clinical science is totally empirical. We
expect that no test, and certainly no
ELISA, can be 100% correct. ELISA
must be directly compared with some
other, independent method of defining
pathogen presence. Then, using a
population of negative and positive
samples, the results from the reference
and ELISA methods are compared and a
threshold is chosen that yields the most
“correct” results, i.e., the fewest false
negatives and/ or false positives. During

18

1655:
14 l
12
10
8

- X+
———Discr. Fund

FREQUENCY

o N A~ O

PLRV

Fig. 4. Histogram of ELISA results (mean of iwo tests performed 1 month apart) for potato
leafroll virus in 297 potato sprouts. Ten negative control plants were used to determine the
healthy mean value. (ELISA data set supplied by Robert Goth, USDA, Beltsville, MD.)

Table 5. Summary of false-negative and false-positive results* of ELISA for potato leafroll
virus infection in 297 potato sprouts, employing commonly used statistical methods vs.
discriminate analysis for determining the positive-negative threshold

Threshold Method

absorbance for setting Percentage of Percentage of
value threshold false negatives false positives
0.040 2x 0.00 9.09
0.050 X+ 3s 0.34 8.42
0.060 ix 1.01 7.07
0.065 x+3s 1.01 6.73
0.080 X+ 4s 2.02 4.71
0.118 CORROD® 9.09 2.36
0.131 LnCORROD® 1111 2.04

* Determined by visual plant symptoms.
® Discriminate function,
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routine use, any ELISA must be
controlled by maintaining the threshold
ina constant range of absorbance values.
Also, satisfactory assay performance
should be proved by contrasting and
using test standards or controls.

The common use of such thresholds as
2x, 3x, x + 3s, etc., should be recognized
asarbitrary at least and often misleading.
A threshold should be adopted on the
basis of an acceptable reference. These
detection rules are not, by themselves,
based on any fundamental property of
ELISA or of the samples to justify their
use,

For adequately reporting ELISA data
at this time, we suggest the following
guidelines:

1. Clearly state the positive-negative
threshold used.

2. Test enough plants to become
familiar with the range of negative
(healthy) values involved.

3. Include enough known negative
controls in each routine assay to ensure
representation of the previously estab-
lished range of negative background
values.

4. Always include a positive control.

5. Match control samples and test
samples with respect to host type, tissue
type, age, and position.

6. Strongly consider replication of test
samples.

We hope we have succeeded in
pointing out some of the pitfalls
associated with doing ELISA and
reporting the resulting data, We hope
also that this article will serve as a focus
for further discussion and research
toward developing more meaningful and
accurate ELISAs and data presentation.
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