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In research dealing with assessment of plant injury, problems
often occur in data analysis when specific treatments or controls
result in little or no injury. For example, ratings of leaf or root
injury from pathogen attack may have large numbers of zero or
low injury scores when low inoculum level treatments are used.
This results in a highly skewed distribution of the injury scores,
with a large proportion of the scores at zero. For higher
inoculum levels, the injury response distribution tends toward
the normal distribution. This leads to another problem when the
variance of the skewed low treatments is significantly less than
the variance for the higher treatment levels. Additional
difficulties may arise when a rating system has unequal intervals
within the rating scale that could skew the distribution of injury
scores. Proper analysis of the data is vital to accurate assessment
of treatment effects.

Analysis of variance

In the analysis of variance (ANOVA) of injury data, the
assumptions of normality and equal variances are violated when
the experiment contains control or low level treatments that
cause little or no injury. The solution usually offered is to
transform the data. When the skewed, low injury distribution is
transformed, the result is a skewed, truncated, transformed
distribution with a large number of transformed zero injury
scores at one end. Variable transformations are not useful for
dealing with either problem because a transformation will not
redistribute the large number of zero injury scores.

The ratio of mean square (treatments)/ mean square (error) is
used to test the hypothesis of no significant treatment
differences in an ANOVA. ANOVAs are frequently used on
highly nonnormal data with the assumption that the
probabilities are close to correct (7). With such data, however,
the significance levels of the ratios from Ftables are not correct
because the normality assumption is violated. The result is that
the mean squares are not distributed as independent chi-square
random variables so that the calculated ratio is not distributed
asan Fratio (9). For sums of squares for treatments and sums of
squares error to be independent chi-square random variables,
Cochran’s theorem requires that the observations be normally
distributed (5). Small deviations from normality are not thought
to have much effect on the probabilities (8), but injury data are
often highly nonnormal. Whereas nonnormal data affect
identification of treatment effects, unequal variances can lead to
misidentification of differences between treatment means.

When unequal treatment variances occur, the distribution of
the sample statistic used to test for differences between
treatment means no longer follows a Student’s 7 distribution.
The distribution of the test statistic can be estimated, but the test
is no longer exact (4).
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Contingency table analysis

There are many alternatives to ANOVA, including weighted
ANOVA, nonparametric one- and two-way ANOVA, assorted
nonparametric tests, and log-linear modeling. Contingency
table analysis by log-linear modeling provides a better
procedure than a standard ANOVA for analyzing nonnormal
data because more reliable probabilities result. Log-linear
modeling may be used to test many of the same hypotheses that
can be tested with an ANOVA. Testing for treatment effect is
possible by testing independence of injury from treatment. In
contingency table analysis, independence of injury from
treatment is equivalent to nonsignificance of treatment effects.
Interactions among factors may be evaluated by testing the
conditional independence of the factors. A drawback to
contingency table analysis is the lack of equivalent mean
separation tests, such as Duncan’s new multiple range test.
However, the odds of given injury classes within each treatment
can be estimated for models found to best fit the data.
Additionally, confidence intervals can be formed around the
odds ratios, allowing comparison of treatments (3). In both the
ANOVA and the log-linear models, the null hypothesis tested
states that injury is independent of treatment effects.

A distinct advantage in the use of contingency table analysis is
that the analysis is not affected by the nonnormal distribution of
the data because the hypothesis testing is not based on the
normality of the sample distribution. In log-linear modeling, the
contingency table is considered as a sample from a multinomial
distribution or as samples from several multinomial
distributions (2). Contingency tables consist of discrete “cells”
of data, each cell a location within the table. Also, the
probabilities from all cells are assumed to add up to one. Thus,
each observation must fall into one of the cells, and the sample
size must be sufficiently large that each cell will have at least one
observation.

A good example of a multinomial distribution is the set of six
possible outcomes from rolling a die. The probability of any one
side being up on a roll is 1/6. Two groups of 100 dice, red and
white, would produce a 2 by 6 contingency table with 200
observations generated by rolling each die once. By counting the
number of observations falling into each of the 12 cells, the
observed frequencies could be tested for the significant effect of
color on die outcome.

Plant injury is often scored for severity according to a
numerical classification, such as integer values from 0 to 10,
where 0 represents no injury and 10 represents 1009 necrosis.
Injury rating for each plant corresponds to a roll of the die in the
example given. To be analyzed with log-linear modeling, injury
data must be put into a contingency table with distinct cells.
Both the treatment and the response variables must be divided
into discrete levels so that each data unit falls into only one cell
of the table. For example, injury ratings grouped into categories
as0to3,3to7,and 7 to 10 would not be valid because plants at 3
and 7 would fall into two cells. If injury is measured in integer
increments, nonoverlapping categories, such as 0 to 3.5, 3.5 to
7.5, and 7.5 to 10, should be chosen to avoid borderline cases.
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Categories should be chosen carefully and not repeatedly
changed; to keep selecting categories until the analysis shows the
desired result is not valid.

Greater numbers of cells in the table increase the accuracy of
the log-linear model. However, the number of cells must be
balanced against the desire to have at least one observation in
each cell. Log-linear modeling can be accomplished with empty
cells, but this should be avoided, particularly with small
numbers of cells. When injury scores are extremely skewed, all
cells may not be filled. When none of the control plants is
injured, the injury scores cannot be broken into more than one
category without having many empty cells in the control
.treatment. This can be solved by grouping the control treatment
with contiguous low level treatments or by eliminating the
control group. When only two treatment levels are being
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Fig. 1. Frequency distribution of total plant injury for kidney bean
exposed to 0, 0.20, or 0.40 ppm of ozone.

358 Plant Disease/Vol. 70 No. 4

evaluated and the control (or lowest level) treatment shows no
injury, the conclusions are obvious and analysis is unnecessary.

Two common statistics used to evaluate treatment
significance are the Pearson chi-square and the likelihood ratio
chi-square. Either statistic may be used to test for significance of
contingency table models, but only the likelihood ratio chi-
square is properly used to evaluate the effects of including
additional model parameters. Because the likelihood ratio
statistics are asymptotically distributed as chi-square (1), a large
number of observations are required for the various tests to be
accurate. Therefore, the greater the number of observations, the
closer the distribution of the likelihood ratio chi-square
approaches the distribution of the chi-square. Although not
defined by specific rules, what constitutes a large number of
observations depends in part on the number of cells in the table.
A rule of thumb is to have an average of 10 observations per cell.
For a table with six or fewer cells, the number of observations
per cell should average 15 or more.

An example

The impact of air pollution on beans can be used to illustrate
the problems encountered in an ANOVA on highly nonnormal
data. Although this example demonstrates the use of
contingency table analysis using log-linear modeling, the
discussion is applicable to other types of research in which
nonnormal data are collected and evaluated.

In an experiment to test the uniformity of ozone exposure
chambers, beans (Phaseolus vulgaris L. ‘California Light Red
Kidney’) were exposed to three levels of ozone. The experiment
was designed as a split plot with three replicate chambers at each
level of ozone and four sections (A, B, C, and D) within each
chamber. Total injury was calculated by rating each trifoliate
leaf on a scale of 0 to 10 and summing the individual leaf ratings
for the total plant. The histograms of total plant injury for
0-ppm and 0.20-ppm ozone treatments illustrate the skewness
and truncation of the data (Fig. 1). The histogram of total plant
injury for the 0.40-ppm treatment appears normally distributed,
with a higher variance than the 0-ppm and 0.20-ppm treatments
(Fig. 1).

Ignoring the inappropriateness of the data (nonnormal) for
ANOVA, the data were analyzed by standard ANOVA
techniques for comparative purposes. Division of each of the
nine ozone chambers into quadrants (sections) resulted in a
restricted randomization of the design. The correct ANOVA for
this experimental setup is a split-plot design, with ozone as the
main plot treatment and the quadrants as subplots. The ozone X
replicate interaction is used for the main plot error, and the
ozone X replicate X section interaction is used for the subplot
error. The results of the ANOVA are shown in Table 1.

The mean squares and the Fratios have been calculated, even
though distribution is incorrect because the data are highly
nonnormal. The F value of 29.46 for ozone is so highly
significant that ozone probably did have a significant effect, but
the significance level cannot be determined with any certainty.
The F value of 1.19 for the section factor is not significant, but

Table 1. Split-plot analy51s of variance for i injury of kldncy bea
plants exposed to three levels of ozone ‘ ~

Source df SsS

 Ozone (0) o 13,145;8,8
Replica 30001




with the high nonnormality of the data, the significance cannot
be ascertained with any degree of accuracy. Any confidence
intervals calculated from this analysis would be highly suspect.

The same data set was subjected to a contingency table
analysis. First, the contingency table had to be constructed. As
an aid in choosing cell cutoff points, histograms were produced
of total plant injury separated by treatment to identify the best
place to split the injury category (Fig. 1). Too many potential
scores for total plant injury prevented giving each possible score
an individual cell, so the scores were grouped. A statistical
package helped speed production of the histograms. Total plant
injury scores were split into two categories, low (0—-17.5) and
high (17.5 and up). Data range was insufficient for more than
two categories, and although some of the original information
was lost, using only two categories was necessary to conduct the
analysis. The value 17.5 was chosen arbitrarily because it fell
near the median for the total population and did not result in
any empty cells. The resulting 2 X 3X 4 table is shown in Table 2.

Model selection. With the contingency table set, the next step
was to select the “best” log-linear model for the data. Several
computer packages (BMDP, SAS, SPSSX) are available to
help select and estimate the best model. The exact method to use
depends on the computer package selected.

One frequently used approach to model selection using the
BMDP statistical package tests the significance of the variables
one at a time, adding variables that significantly increase the fit
of the model. In our example, the parameters were S (chamber
section), I (total plant injury), and O (ozone treatment level).
The BMDP statistical package was used for the example; Table
3 summarizes the statistical analysis. The first step in selecting a
model was to determine which parameters of any given
interaction order were significant. Significance in the BMDP
run was determined by the probability of the parameters
equaling zero. Thus, parameters of any order with a probability
of 0.05 or less should be significant, i.e., a 95% probability they
are not zero. The analysis confirmed that at least one first-order
(8,1, or O) and one second-order (SI, SO, or I0) parameter were
significant (P <{0.05) (Table 3). The third-order parameter
(SIO), however, had an approximate 51% chance of being equal
to zero and was not significant. Thus, there was not a significant
section by injury by ozone interaction.

BMDP also tests for significance of individual interactions in
the log-linear model. As before, probabilities less than 0.05
indicate significant interactions. The SIO (third-order)
parameter was not significant in the analysis (Table 3). Ozone
had a highly significant effect on injury, shown by the high
degree of significance of the 10 term. This confirms the result
found in the ANOVA. Unlike the ANOVA, where section did
not approach significance, the SI effect was significant at the
0.05 level. The SO term was not significant, so the appropriate
model for the data includes the S, O, I, SI, and IO.

This analysis considers only hierarchical models, i.e., models
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in which lower order parameters that are part of a higher order
interaction included in the model are also included in the model,
regardless of significance. Because the SI parameter was
significant (Table 3), indicating section by injury interactions,
both S and I parameters were included in the model.

The best model included the ST and 10 terms, indicating that
total plant injury depended on both ozone and section, since the
best model included both ozone by injury (10) and section by
injury (SI) interactions. The nonnormality of the data led to the
ANOVA completely missing the significant effect of the section.
A second method of model selection (not discussed here)

Table 3. Summary of BMDP model selection analysis:
simultaneous test that all interactions of order k are zero and
significance tests for specific interactions

Effects® df  Pearson chi-square Probability
k order
1(S,1,0r0) 6 35.64 0.000
2(S1,80,0r10) 11 379.22 0.000
3 (S10) 6 5.25 0.512
Specific interactions
S 3 8.99 0.030
S0 6 5.99 0.424
10 2 391.30 0.000
SIO 6 5.50 0.482

in‘jixry, S = section, O = ozone.

1 Table 4. Log-lmear and exponentiated parameters from BMDP

: ,for mteractlon terms of 10, SI model

Log-linear Exponentiated

, , (lambda) [exp (lambda)]
Ch amb er L injury injury

- :; sectiou ~ Low High Low High

A 0134 —0.134 1.143 0.875

B 0004 —0.004 1.004 0.996

_c . —019] 0.191 0.826 1.210

D - 0.053 —0.053 1.054 0.948

Odds of low injury

. Odds

~ Cross product ratio

~ Avs. B = (1.143 X 0.996)/(1.004 X 0.875) = 1.296

Avs.C = (1.143 X 1.210)/(0.826 X 0.875) = 1914

= (1.143 X 0.948)/(1.054 X 0.875) = 1.175

Avs. D

T b]e 5, Log-hnear and exponentiated parameters from BMDP

f - for mteractmn terms of 10, SI model

Log-lmear Exponentiated
(lambda) [exp (lambda)]
injury injury
Ozone level Low High Low High
0 ppm 1.30 —1.30 3.670 0.273
0.20 ppm —0.178 0.178 0.837 1.195
0.40 ppm -1.122 1.122 0.326 3.071
Odds of low injury
. Odds
~ Cross product ratio

~ 0ppm vs.0.20 ppm = (3.67 X 1.195)/(0.837 X 0.273) = 19.19
~ 0ppmyvs. 0.40 ppm = (3.67 X 3.071)/(0.326 X 0.273) =126.64
" 020ppmvs 0.40 ppm = (.837 X 3.072)/(0.325 X 1.194) =  6.60
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utilizing all possible models can be accomplished through
BMDP (1). Although two- or three-way tables are practical,
four-way or larger tables include too many models to be
manageable.

Parameter estimation and evaluation. The next step in the
analysis after selection of the best model was estimation of the
parameters, Using BMDP, an additional analysis specifying the
S1 and 10 models was necessary to determine the expected cell
frequencies and the log-linear parameters. Examination of the
expected cell frequencies helped determine which cells did not fit
the model. The expected values under this model (Table 2), as
determined for the example by BMDP, were quite close to the
observed frequencies (Table 2), indicating a good fit to the data.

The next step after estimating the log-linear parameters was
determining the effect of the interactions. The simplest way to
identify interaction effects is to generate odds ratios that can
give insight into treatment effects. Odds ratios are produced
from exponential log-linear parameters (lambda values)
generated in the analysis (Table 4). To determine the effect of
section on injury (SI interaction), the odds of low injury
occurring in section A vs. those in sections B, C, and D were
calculated from the appropriate cross product ratios. When
section A vs. section B was examined for the odds of low injury,
the cross product of only these sections was used. The odds for
low injury occurring in section A vs. section C and section A vs.
section D were calculated similarly. The odds of occurrence of
high injury could have been determined identically except that
the low and the high injury columns would have been reversed
before calculating the cross products. In the example data set,
all of the odds ratios were greater than one, so a plant in section
A was more likely to be in the low injury category than a plant in
any other section. From the ratios, the odds of low injury
occurring among plants in section A were 1.296 times those of
plants in section B, 1.914 times those of plants in section C, and
1.175 times those in section D (Table 4). Therefore, section C
was least likely to have plants in the low injury category. All
other sections had approximately equal odds ratios for low
injury. Other section odds ratios (BC, BD, and CD) were not
necessary for identifying the high and the low injury sections
and thus were not calculated. With other data sets, calculation
of all odds ratios might be necessary to determine treatment
effects.

The relative effects of ozone levels of injury (Ol interactions)
were determined in the same manner as those for the SI
interactions, using cross products of the Ol interaction
parameters. The results indicated that the odds of low injury
occurring among plants in the low ozone (0 ppm) chambers were
19.19 times those of plants in the medium ozone (0.20 ppm)
chambers and 126.64 times those of plants in the high ozone
(0.40 ppm) chambers (Table 5). The odds of low injury
occurring among plants in the medium ozone chambers were
6.60 times those of plants in the high ozone chambers (Table 5).
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In summary

Using log-linear modeling for highly nonnormal data will give
more reliable results than simply running an ANOVA. Log-
linear modeling does not require many sacrifices, and the lack of
a mean separation test is a fair price to pay for information
reported with reliable probabilities. Adequate observations are
essential, but conducting contingency table analysis on even
marginal numbers of observations is better than performing an
inappropriate analysis, i.e., ANOVA. Although with our
example data set, discrete statistical separations could not be
assigned to the odds ratios as in Duncan’s test, the odds ratios
were calculated for factors and interactions that had a minimum
level of significance (P <0.05). The odds ratios were the “best”
estimate of the actual treatment differences.

The variety of injury rating systems with different scalar
attributes and the usual nonnormal injury response of plants
stressed with both biotic and abiotic factors lead to problems in
accurately assessing plant effects and the efficacy of control
measures. Therefore, results must be reported reliably and
treatment effects or interactions cannot be overlooked or
incorrectly identified because of inappropriate analyses. We
used determination of uniformity in air pollution injury within
fumigation chambers as an example, but contingency table
analysis can be utilized for other nonnormal data.

The contingency table analysis available on most computer
statistical packages is somewhat more involved than ANOVA
procedures. Several programs in addition to BMDP, used for
our example, are readily available. For thorough understanding
of the analysis and for additional information and examples, we
recommend any of the standard texts on analyzing nonnormal
data, e.g., the text by Kennedy (6).
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