Link to home

Control of Fusarium Wilt of Watermelon by Grafting onto Bottlegourd or Interspecific Hybrid Squash Despite Colonization of Rootstocks by Fusarium

February 2014 , Volume 98 , Number  2
Pages  255 - 266

A. P. Keinath and R. L. Hassell, Clemson University, Coastal Research and Education Center, Charleston, SC 29414



Go to article:
Accepted for publication 7 September 2013.
Abstract

Grafting watermelon (Citrullus lanatus var. lanatus) onto rootstocks of interspecific hybrid squash (Cucurbita moschata × C. maxima), bottle gourd (Lagenaria siceraria), or citron (Citrullus lanatus var. citroides) has been used in Asia and Israel to mange Fusarium wilt of watermelon caused by Fusarium oxysporum f. sp. niveum. The objectives of this study were to determine the frequency of infection of six rootstocks by F. oxysporum f. sp. niveum races 1 and 2 and the field performance of grafted rootstocks in Charleston, SC. Grafted and nongrafted watermelon and rootstock plants were inoculated in the greenhouse with race 1, race 2, or water (the control treatment). With both races, the frequency of recovery of F. oxysporum from scion and rootstock portions of inoculated watermelon plants grafted onto ‘Ojakkyo’ citron was greater than from watermelon plants grafted onto ‘Shintosa Camel’ and ‘Strong Tosa’ interspecific hybrid squash, and from plants grafted onto ‘Emphasis’, ‘Macis’, and ‘WMXP 3945’ bottlegourd. For nongrafted plants inoculated with race 1, percent recovery also was greater from Ojakkyo than from interspecific hybrid squash and bottlegourd. For nongrafted plants inoculated with race 2, F. oxysporum was recovered from the base of ≥79% of all inoculated plants. More than two-thirds (15) of 21 isolates recovered from the tops or scions of inoculated plants were pathogenic on watermelon. In spring 2010 and 2011, the six rootstocks were grafted with seedless watermelon ‘Tri-X 313’, which is susceptible to both races, and transplanted in a field infested with races 1 and 2 of F. oxysporum f. sp. niveum. Disease incidence for nongrafted and self-grafted Tri-X 313 (the control treatments) and Tri-X 313 grafted onto Ojakkyo citron did not differ significantly. Grafted watermelon plants produced greater weights and numbers of fruit than plants of the two control treatments. Nonpathogenic isolates of F. oxysporum and isolates of F. oxysporum f. sp. niveum colonized interspecific hybrid squash, bottlegourd, and grafted watermelon. The rootstocks evaluated, however, restricted movement of F. oxysporum f. sp. niveum into the watermelon scion, suppressed wilt symptoms, and increased fruit yields in an infested field.



© 2014 The American Phytopathological Society