Link to home

First Report of Sweet potato virus G and Sweet potato virus 2 Infecting Sweetpotato in North Carolina

November 2013 , Volume 97 , Number  11
Pages  1,516.2 - 1,516.2

C. V. Almeyda, Department of Plant Pathology, North Carolina State University, Raleigh, NC 27695; J. A. Abad, USDA, APHIS PPQ FO PGQP, Beltsville, MD 20705; and Z. Pesic-VanEsbroeck, Department of Plant Pathology, North Carolina State University, Raleigh, NC 27695



Go to article:
Accepted for publication 24 June 2013.

Sweet potato virus G (SPVG) and Sweet potato virus 2 (SPV2) are two members of the genus Potyvirus, distinct from Sweet potato feathery mottle virus (SPFMV) (1,2,4). The significance of SPVG and SPV2 to sweetpotato (Ipomoea batatas Lam.) is that each virus can synergistically interact with Sweet potato chlorotic stunt virus (SPCSV) inducing sweet potato virus disease (SPVD) (1,2,4). During the summer of 2012, susceptible indicator plants (I. setosa) were evenly distributed in sweetpotato experimental plots at two research stations (Clinton and Kinston) in North Carolina (NC). Naturally infected indicator plants (n = 129) showing virus-like symptoms including vein clearing, chlorotic mosaic, and chlorotic spots were collected and tested for the presence of viruses. Sap extract from plants tested positive for SPVG and SPV2 by nitrocellulose immune-dot blot, using SPVG antiserum obtained from the International Potato Center (Lima, Peru) and SPV2 antiserum kindly provided by C. A. Clark, Louisiana State University. Total RNA was extracted from 200 mg of symptomatic leaf tissue by using the QIAGEN RNeasy Plant Mini Kit (Hilden, Germany) adding 2% PVP-40 and 1% 2-mercaptoethanol to the extraction buffer. Multiplex RT-PCR was carried out using the SuperScript III One-Step RT-PCR System (Invitrogen, Carlsbad, CA) with specific primers designed for simultaneous detection and differentiation of four closely related sweetpotato potyviruses (3). Amplicons were cloned using the pGEM-T Easy cloning kit (Promega, Madison, WI) and sequenced. Quantitative RT-PCR was used for SPCSV detection. Results confirmed the presence of SPVG and SPV2 in single infections on 7% and 0.8% of samples, respectively; and in mixed infections on 54% and 3% of samples, respectively. SPVG was found as the most prevalent in all viral combinations where 14% of samples were infected with SPVG and SPFMV; and 15% of samples were infected with SPVG, SPFMV, and Sweet potato virus C (SPVC). SPV2 was detected in less common combinations (0.8%) associated with SPVG and SPFMV. The mixed infection SPVG and SPCSV as well as the combination SPV2 and SPCSV was detected in 0.8% of samples. Sequence analyses of the samples at nucleotide level (GenBank Accession Nos. KC962218 and KC962219, respectively) showed 99% similarity to SPVG isolates from Louisiana (4) and SPV2 isolates from South Africa (1). Scions from infected indicator plants were wedge grafted onto healthy sweetpotatoes (cvs. Beauregard and Covington). Eight weeks after grafting, chlorotic mosaic was observed on plants with mixed potyvirus infections whereas plants with single potyvirus infection showed no obvious symptoms. RT-PCR testing and sequencing of amplicons corroborate the presence of both viruses initially detected in indicator plants. Additionally, naturally infected sweetpotato samples (n = 102) were collected in the same experimental plots. SPVG and SPV2 were detected and identified following the described methodology. In the United States, SPVG has been shown to be prevalent in Louisiana (4) and the results presented here indicate that SPVG is spreading in NC. Our results confirm the presence of SPVG and SPV2 in NC. To our knowledge, this is the first report of SPVG and SPV2 in sweetpotato fields in NC.

References: (1) E. M. Ateka et al. Arch Virol 152:479, 2007. (2) F. Li et al. Virus Genes 45:118, 2012. (3) F. Li et al. J. Virol. Methods 186:161, 2012. (4) E. R. Souto et al. Plant Dis 87:1226, 2003.



© 2013 The American Phytopathological Society