Link to home

First Report of Anthracnose Caused by Colletotrichum gloeosporioides on Schefflera actinophylla in China

July 2013 , Volume 97 , Number  7
Pages  998.1 - 998.1

J. Huang, Institute of Plant Pathology, Zhongkai University of Agriculture and Engineering, Guangzhou 510315, P. R. China



Go to article:
Accepted for publication 11 February 2013.

In China, in mild to warm climates, Schefflera actinophylla is commonly grown as a decorative tree in gardens. When mature, it has bright red flowers in inflorescences with up to 20 racemes that develop in summer or early autumn. From 2008 to 2011, lesions were observed on young and mature leaves in several locations in Guangzhou, China. The first symptoms were circular, necrotic areas that usually developed into irregular, dry, brown to reddish brown or black spots. Spots often first appeared at or near the margins of leaves. Reproductive bodies of the pathogen appeared as black specks in leaf spots. Under a 10× magnification, black, needle-like fungal structures (setae) were observed in the centers of spots on the upper leaf surface. A fungus was isolated from the lesion and was identified as Colletotrichum gloeosporioides (Penz.) Penz. & Sacc. based on cultural characteristics and conidial morphology (1). The voucher isolates were deposited in the Institute of Plant Pathology, Zhongkai University of Agriculture and Engineering. C. gloeosporioides is a species complex (2) and there is a degree of unresolved aspects of taxonomy in this species complex. Cultures on potato dextrose agar (PDA) had aerial white mycelium that turned gray to grayish black after 10 days at 25°C and a 12-h photoperiod and produced salmon to orange conidial masses. Brown, 80 to 120 μm long setae were observed in the acervulus. Conidia 14.1 to 18.0 × 4.0 to 6.1 μm in size were hyaline, thin-walled, aseptate, granular inside, clavate to slightly navicular in shape with an obtuse apex and a truncate base. To identify the fungus, a 588-bp segment of the ITS1-5.8S-ITS2 rDNA region was amplified by PCR and sequenced. The DNA sequence was submitted to GenBank as KC207404. A BLAST search of the DNA sequence showed 99% identity with accessions AY266389.1, EF423519.1, and HM575258.1 of C. gloeosporioides. Pathogenicity tests were conducted under greenhouse conditions at 25 ± 2°C. A total of 15 leaves from three 1-year-old S. actinophylla plants were inoculated with mycelial PDA plugs that were placed on 0.5-cm2 leaf wounds and then wrapped with Parafilm. Control leaves were treated similarly except that they were inoculated with PDA plugs without the fungus. No symptoms developed on control leaves after 10 days. Foliar lesions on inoculated leaves closely resembled those observed in the field. C. gloeosporioides was reisolated consistently from inoculated leaves. Pathogenicity was also tested by spraying leaves of potted S. actinophylla plants about 30 cm in height with 10 ml of a conidial suspension (1 × 105 conidia/ml) prepared from 7-day-old PDA cultures grown at 25°C. Leaves sprayed with distilled water were used as controls. Three plants were inoculated in each of two experiments and were incubated at 25°C and 90% relative humidity in a growth chamber. Tiny brown spots started to develop on all inoculated leaves 5 days after inoculation and the progression of symptom development was similar to that observed in the field. Control leaves remained asymptomatic. C. gloeosporioides was reisolated from inoculated leaves. To my knowledge, this is the first report of C. gloeosporioides causing anthracnose on S. actinophylla in China.

References: (1) B. C. Sutton. The genus Glomerella and its anamorph Colletotrichum. In: Colletotrichum Biology, Pathology and Control. CAB International, Wallingford, UK, 1992. (2) B. S. Weir et al. The Colletotrichum gloeosporioides species complex. Stud. Mycol. 73:115, 2012.



© 2013 The American Phytopathological Society