Link to home

Temporal Patterns of Sporulation Potential of Phomopsis viticola on Infected Grape Shoots, Canes, and Rachises

September 2012 , Volume 96 , Number  9
Pages  1,297 - 1,302

D. J. Anco, L. V. Madden, and M. A. Ellis, The Ohio State University, Department of Plant Pathology, Ohio Agricultural Research and Development Center, Wooster 44691



Go to article:
Accepted for publication 20 March 2012.
Abstract

Phomopsis cane and leaf spot on Vitis spp. (grape) is currently understood to be monocyclic, with primary inoculum only being produced early in the growing season. However, of the few published studies pertaining to sporulation of Phomopsis viticola, none specifically examined rachises, and none were designed to determine when infected tissues become capable of sporulation. The objective of these studies was to determine when grape shoots, canes, and rachises infected with P. viticola develop the capacity to sporulate, and to determine the time period during which those tissues remain capable of sporulation. Starting in 2009 and 2010, infected first-year shoots and rachises were collected biweekly throughout the growing season, into the dormant season, and into the following growing season. Tissues were collected from ‘Catawba,’ ‘Concord,’ and ‘Reliance’ vineyards. Samples were observed for sporulation after 48 h of incubation in a moist chamber at 23°C; the magnitude of the conidia production under these optimal conditions was considered the sporulation potential. For infections that occurred in 2009 and 2010, the production of conidia was not observed until after harvest. In the year following infection, sporulation potential was found from about bud break until shortly after the end of bloom. There was a generally consistent temporal pattern to relative sporulation potential across sampled vineyards, years, and grape tissues (rachises and canes), described by a modified β model, with peak sporulation potential occurring around 16 May. These results confirmed that Phomopsis cane and leaf spot is a monocyclic disease and support control recommendations for use of fungicides in spring.



© 2012 The American Phytopathological Society