Link to home

First Report of Anthracnose Caused by Colletotrichum gloeosporioides on Ramie in China

December 2010 , Volume 94 , Number  12
Pages  1,508.1 - 1,508.1

X. X. Wang, B. Wang, J. L. Liu, J. Chen, X. P. Cui, H. Jiang, and D. X. Peng, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, P.R. China



Go to article:
Accepted for publication 19 September 2010.

Ramie (Boehmeria nivea), usually called “China grass”, is a perennial herbaceous plant belonging to the family Urticaceae with recognized importance in the production of fibers. It is mainly planted in China and other Asian countries including the Philippines, India, South Korea, and Thailand. From June 2007 to September 2010, typical anthracnose symptoms were observed in cultivated ramie fields in HuBei, HuNan, JiangXi, and SiChuan provinces, China, with the diseased area estimated to be more than 10,000 ha. Ramie yield was reduced by 20% on average with up to 55% yield losses in some fields. Lesions were initially small, scattered, round, and gray with brown margin on leaves. As the disease progressed, irregular spots developed and expanded until the leaves withered. Initial lesions on stems were fusiform and expanded, causing the stem to break. Finally, the fibers ruptured. Five isolates (CS-1, CS-2, CS-3, CS-4, and CS-5) were used to evaluate cultural and morphological characteristics of the pathogen. On potato dextrose agar, all isolations initially developed white colonies with orange conidial mass and the colonies turned to gray or brown after 5 days of incubation. Twenty conidia and fifteen setae were measured. Conidia were single celled, colorless, straight, oval, obtuse at both ends, and 11 to 18 × 3 to 6 μm with an average of 14.89 × 4.32 μm. Conidiophores were dense and 11 to 22 × 4 to 5 μm with an average of 15.82 × 4.43 μm. Setae were few, dark brown, one to two septa, and 62 to 71 × 4 to 5 μm with an average of 65.13 × 4.46 μm. The pathogen was identified as Colletotrichum gloeosporioides on the basis of descriptions in Bailey and Jeger (1). Genomic DNA was extracted from the five isolates and sequences of rDNA-ITS with primers ITS1 and ITS4 were obtained (GenBank Accession Nos. GQ120479--GQ120483). Comparison with sequences in GenBank showed 99 to 100% similarity with C. gloeosporioides (Accession Nos. FJ515005, FJ459930, and HM016798). Pathogenicity tests were performed with the five isolates in the laboratory by spraying conidial suspensions (1 × 106 conidia/ml) onto upper and lower surfaces of 10 leaves of 10-day-old, 30-cm high plants. There were three replicate plants for each isolate. The inoculated plants were incubated with a 12-h photoperiod at 25 to 28°C and 90% relative humidity in an artificial climate chamber. Three days after inoculation, brown spots were observed on all inoculated leaves, but no symptoms were seen on water-treated control plants. Koch's postulates were fulfilled by reisolation of C. gloeosporioides from diseased leaves. Though in the revision of Colletotrichum by von Arx (4) and Sutton (3), C. boehmeriae, named based on host specificity, was cancelled, C. boehmeriae was regarded as a pathogen of ramie by some Chinese researchers (2). To our knowledge, this is the first report of C. gloeosporioides causing anthracnose of ramie in China.

References: (1) J. A. Bailey and M. J. Jeger. Colletotrichum: Biology, Pathology and Control. CAB International, Wallingford, UK, 1992. (2) R. M. Li and H. G. Ma. J. Plant Prot. 20:83, 1993. (3) B. C. Sutton. Page 523 in: The Coelomycetes: Fungi Imperfecti with Pycnidia, Acervuli and Stromata. Commonwealth Mycological Institute, London, 1980. (4) J. A. von Arx. Phytopathol. Z. 29:413, 1957.



© 2010 The American Phytopathological Society