Link to home

First Report of Pestalotiopsis microspora Causing Leaf Blight of Reineckea carnea in Central China

June 2009 , Volume 93 , Number  6
Pages  667.1 - 667.1

M. D. Wu, The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; and G. Q. Li and D. H. Jiang, The State Key Laboratory of Agricultural Microbiology and The Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei, China



Go to article:
Accepted for publication 10 March 2009.

Pink reineckia (Reineckea carnea (Andrews) Kunth) is an evergreen herbaceous perennial plant widely grown as groundcover or for medical purposes in southern China. In 2006 and 2007, severe leaf blight was observed on pink reineckia in Wuhan, China. On newly formed pink reineckia leaves, symptoms were first noted in early May as grayish to dark brown, oval or irregular-shaped lesions, 1.5 to 0.2 × 0.5 to 0.1 cm (n = 50), on the leaf margin or leaf tip. A yellowish halo surrounded each lesion. Lesions enlarged and coalesced and diseased leaves became blighted during the fall and winter. In severely infected plots, most plants became straw-colored and had to be replaced with healthy seedlings. A fungus was isolated from surface-disinfested lesions on potato dextrose agar (PDA) at a frequency of 85.7%. One of 30 isolates, designated C2, was characterized further. The fungus growing on PDA at 20°C for 14 days formed zonate white colonies and black acervular conidiomata. Conidia of the fungus aggregated on acervuli as droplets. Conidia were fusiform and 20.7 to 32.2 × 5.8 to 9.8 μm (n = 50). Each conidium had one hyaline apical cell, one hyaline basal cell, and three dark brown median cells. There were two to four hyaline filamentous appendages 8.1 to 20.4 μm long attached to each apical cell and one hyaline appendage 2.4 to 7.1 μm long attached to each basal cell. The cultural and morphological characteristics of isolate C2 matched the description for Pestalotiopsis microspora (Speg.) Batista & Peres (1,2). The internal transcribed spacer (ITS) region of the ribosomal DNA (ITS1-5.8S-ITS2) was PCR-amplified and sequenced. The ITS sequence (606 bp) for isolate C2 (GenBank Accession No. EU935587) was 100% similar to P. microspora isolates TA-57 (GenBank Accession No. AY924267) and LK32 (GenBank Accession No. DQ001002). Pathogenicity of isolate C2 was tested with the method described by Keith et al. (2). Four detached leaves were wound inoculated or inoculated without wounding with mycelia on agar plugs (4 mm in diameter; three plugs per leaf) or conidial suspensions (107 conidia per ml; 20 μl on each of three sites per leaf). Control leaves were wound inoculated with PDA or sterile water. All inoculated leaves were maintained in a moist enamel tray under fluorescent light for 7 days at 20°C. The test was performed twice. After 4 days of incubation, necrotic leaf lesions resembling symptoms that occurred in the field were observed on the wound-inoculated leaves, whereas the control leaves and C2-inoculated leaves without wounding remained healthy. Therefore, wounding was necessary for symptom development (2). A fungus was reisolated from the C2-induced leaf lesions and the morphology of colonies and conidia were identical to that for isolate C2 of P. microspora. On the basis of the results of isolations, inoculations, and fungal identification, P. microspora was determined to be the causal agent for leaf blight of pink reineckia occurring in Wuhan, China. This fungus previously has been reported as the causal agent of scab disease of Psidium guajava in Hawaii (2), decline of Torreya taxifolia in Florida (3), and leaf blight of Lindera obtusiloba in Korea (1). To our knowledge, this is the first report of the occurrence of P. microspora on R. carnea.

References: (1) Y. H. Jeon et al. Plant Pathol. 56:349, 2007. (2) L. M. Keith et al. Plant Dis. 90:16, 2006. (3) M. W. Schwartz et al. Plant Dis. 80:600, 1996.



© 2009 The American Phytopathological Society