Link to home

First Report of Rust Caused by Phakopsora pachyrhizi on Soybean and Kudzu in Texas

July 2006 , Volume 90 , Number  7
Pages  971.1 - 971.1

T. Isakeit , Department of Plant Pathology and Microbiology, Texas A&M University, College Station ; M. E. Miller and R. Saldaña , Department of Plant Pathology and Microbiology, Texas A&M University, Weslaco ; L. W. Barnes , Department of Plant Pathology and Microbiology, Texas A&M University, College Station ; J. M. McKemy and M. E. Palm , USDA-APHIS-PPQ-NIS, Beltsville, MD ; and K. A. Zeller , R. DeVries-Paterson , and L. Levy , USDA-APHIS-PPQ-CPHST-NPGBL, Beltsville, MD



Go to article:
Accepted for publication 28 April 2006.

The Asian soybean rust fungus, Phakopsora pachyrhizi H. Sydow & Sydow, was found on a 0.4-ha patch of kudzu (Pueraria lobata) near Dayton (Liberty County) in East Texas on November 2, 2005. Nearly 100% of the 300 leaflets examined were diseased with severity ranging from 5 to >100 lesions per leaflet. Eleven soybean fields as much as 20 km away were scouted and no infected plants were found. Asian soybean rust was also found on a 0.4-ha field of soybean (Glycine max cv. Vernal) on February 14, 2006 at the Texas A&M Agricultural Experiment Station in Weslaco (Hidalgo County) in the Lower Rio Grande Valley (LRGV) of Texas. Disease incidence was 100% (severity ranging from 5 to >100 lesions per leaflet) on 50 younger plants with green leaves along the edges of the field, whereas most of the plants in this field had senesced. These plants were not symptomatic and were at the R6 stage (full seed) when this field was previously scouted on December 19, 2005. Lesions on leaflets of kudzu and soybean were small and angular with erumpent uredinia typical of P. pachyrhizi. Urediniospores were ovoid or globose, hyaline, and measured 25 to 30 × 14 to 21 μm. Leaf samples with pustules were positive for P. pachyrhizi using enzyme-linked immunosorbent assay (ELISA) (Envirologix, Portland, ME). Morphological and polymerase chain reaction (PCR) identification of P. pachyrhizi from kudzu and soybean samples were confirmed by the USDA-APHIS-PPQ NIS and CPHST laboratories in Beltsville, MD as previously described (2). The kudzu in East Texas is not likely to support overwintering of the pathogen because it usually dies back during the winter. Leaves at this site were dead by January 17, 2006. This is the southernmost infestation of kudzu in Texas known to us. In contrast, the LRGV has a subtropical climate that would favor year-round survival of the fungus (3). This area, where 120 to 160 ha of soybeans are grown, may be a source of inoculum for soybean rust epidemics in the Midwest. Spore movement would follow the same pattern as seen with cereal rusts (1). However, soybeans are typically absent from the LRGV between late December and early March, so survival of the fungus during this interval would require other hosts. Regardless of whether the fungus overwinters here, or moves in from elsewhere, the LRGV spring crop could serve as an early indicator of a potential rust epidemic.

References: (1) M. G. Eversmeyer and C. L. Kramer. Annu. Rev. Phytopathol. 38:491, 2000. (2) J. M. Mullen et al. Plant Dis. 90:112, 2006. (3) S. Pivonia et al. Plant Dis. 89:678, 2005.



© 2006 The American Phytopathological Society