Link to home

Physiologic Specialization of Puccinia triticina on Wheat in the United States in 2002

October 2004 , Volume 88 , Number  10
Pages  1,079 - 1,084

J. A. Kolmer , Research Plant Pathologist , D. L. Long , Plant Pathologist , and M. E. Hughes , Biologist, United States Department of Agriculture-Agricultural Research Service Cereal Disease Laboratory, Department of Plant Pathology, University of Minnesota, St. Paul 55108



Go to article:
Accepted for publication 7 May 2004.
ABSTRACT

Collections of Puccinia triticina were obtained from rust-infected wheat leaves by cooperators throughout the United States and from surveys of wheat fields and nurseries in the Great Plains, Ohio Valley, Southeast, California, and the Pacific Northwest, in order to determine the virulence of the wheat leaf rust fungus in 2002. Single uredinial isolates (785 in total) were derived from the wheat leaf rust collections and tested for virulence phenotype on lines of Thatcher wheat that are near-isogenic for leaf rust resistance genes Lr1, Lr2a, Lr2c, Lr3, Lr9, Lr16, Lr24, Lr26, Lr3ka, Lr11, Lr17, Lr30, LrB, Lr10, Lr14a, and Lr18. In the United States in 2002, 52 virulence phenotypes of P. triticina were found. Virulence phenotype MBDS, which is virulent to resistance gene Lr17, was the most common phenotype in the United States. MBDS was found in the Southeast, Great Plains, and the Ohio Valley regions, and also in California. Phenotype MCDS, virulent to Lr17 and Lr26, was the second most common phenotype and occurred in the same regions as MBDS. Virulence phenotype THBJ, which is virulent to Lr16 and Lr26, was the third most common phenotype, and was found in the southern and northern central Great Plains region. Phenotype TLGJ, with virulence to Lr2a, Lr9, and Lr11, was the fourth most common phenotype and was found primarily in the Southeast and Ohio Valley regions. The Southeast and Ohio Valley regions differed from the Great Plains regions for predominant virulence phenotypes, which indicate that populations of P. triticina in those areas are not closely connected. The northern and southern areas of the Great Plains were similar for frequencies of predominant phenotypes, indicating a strong south to north migration of urediniospores.



The American Phytopathological Society, 2004