Link to home

First Report of a Field Outbreak of a Bacterial Leaf Spot of Cantaloupe and Squash Caused by Pseudomonas syringae pv. syringae in Georgia

May 2003 , Volume 87 , Number  5
Pages  600.2 - 600.2

D. B. Langston , Jr. , F. H. Sanders , J. H. Brock , and R. D. Gitaitis , Department of Plant Pathology, University of Georgia, Coastal Plain Experiment Station, Tifton 31793 ; J. T. Flanders , University of Georgia Cooperative Extension Service, Cairo 31728 ; and G. H. Beard , University of Georgia Cooperative Extension Service, Moultrie 31768



Go to article:
Accepted for publication 13 February 2003.

In March 2000, a leaf spot was reported affecting yellow summer squash (Cucurbita pepo) and cantaloupe (Cucumis melo) in commercial fields in Colquitt, Echols, and Grady counties in Georgia. All of the crops affected were reported within a 10-day period, and average temperatures during that time were 8 to 22.5°C, which is very close to the 50-year normal temperatures for these areas located in southwest Georgia. Incidence in affected fields was 100%. Lesions on squash leaves appeared irregularly shaped, dark, water soaked, somewhat vein restricted, and were 5 to 10 mm in diameter. Lesions on cantaloupe were angular, light tan, and necrotic with a lesion diameter of 2 to 5 mm. A general chlorosis was observed around lesions of both crops. Leaf distortion was observed on squash. Four isolates collected were used in biochemical, pathogenicity, and physiological tests. Gram-negative, rod-shaped bacteria were isolated from diseased tissue from squash and cantaloupes. Bacteria were aerobic, catalase-positive, fluorescent on King's medium B (1), oxidase-negative, nonpectolytic on potato, arginine dihydrolase-negative, utilized sucrose as a carbon source, produced levan, and gave a hypersensitivity response on tobacco (HR). Analysis of fatty acid methyl ester (FAME) profiles using the Microbial identification system (Sherlock version 3.1, Microbial identification system, Newark, DE) characterized representative strains as Pseudomonas syringae (similarity indices 0.65 to 0.80). Upon further characterization, the strains were negative for l (+)-tartarate utilization but utilized l-lactate and betaine and also exhibited ice nucleation activity. These characteristics are consistent with those of Pseudomonas syringae pv. syringae. Squash and cantaloupes were grown in a greenhouse for 4 weeks. Bacteria were grown in nutrient broth, resuspended in sterile tap water, and standardized using a spectrophotometer. Plants were inoculated by infiltrating leaves with 1 ml of bacterial suspensions (1 × 107 CFU/ml) using sterile syringes. Sterile water was used as a negative control, and 1 ml was infiltrated into leaves of squash and cantaloupes. Water-soaked lesions developed in 4 to 6 days on squash and cantaloupes inoculated with bacterial suspensions, and Pseudomonas syringae pv. syringae was isolated from diseased tissue. No symptoms developed on squash and cantaloupes used as negative controls. This outbreak of Pseudomonas syringae pv. syringae did not cause significant economic damage to either crop as symptoms subsided once daily high temperatures reached 28 to 32°C. This disease has been isolated from several cucurbit transplants reared in greenhouses, but to our knowledge, this is the first report of this disease occurring in the field.

Reference: (1) E. O. King et al. J. Lab. Clin. Med. 44:301, 1954.



© 2003 The American Phytopathological Society