Link to home

First Report of Phytophthora ramorum on Douglas-Fir in California

November 2002 , Volume 86 , Number  11
Pages  1,274.2 - 1,274.2

J. M. Davidson , Pacific Southwest Research Station, USDA Forest Service, P.O. Box 245, Berkeley, CA 94701 ; M. Garbelotto , Department of Environmental Science, Policy and Management, Ecosystem Science Division, 151 Hilgard Hall, University of California, Berkeley 94720 ; S. T. Koike , University of California Cooperative Extension, 1432 Abbott Street, Salinas ; and D. M. Rizzo , Department of Plant Pathology, One Shields Ave., University of California, Davis 95616



Go to article:
Accepted for publication 26 August 2002.

Phytophthora ramorum S. Werres & A.W.A.M. de Cock was isolated from three Douglas-fir (Pseudotsuga menziesii) saplings in a mixedevergreen forest in Sonoma County, California. Symptoms on these saplings included cankers on small branches (0.5 to 1 cm in diameter) resulting in wilting of new shoots, dieback of branches, and loss of leaves as much as 15 cm from the twig tip. Symptoms were observed on most saplings growing in the same area. On several smaller saplings (<1 m tall), P. ramorum infection resulted in the death of the leader and the top several whorls of branches. Isolates were identified as P. ramorum by their abundant chlamydospores and caducous, semi-papillate sporangia (2) and internal transcribed spacer rDNA sequences identical to those of isolates of P. ramorum from Quercus spp., Lithocarpus densiflorus, and Rhododendron (1,2). To test for pathogenicity, foliage inoculations were conducted on seedlings in two trials by misting 30 leaves per trial (five leaves per seedling plus controls) with sterile distilled water and pinning inoculum plugs, taken from the margin of P. ramorum cultures, to the upper surface of leaves. Inoculation resulted in lesions ranging between 1 and 12 mm long, and P. ramorum was recovered from 47% of inoculated leaves. Symptoms were not restricted to inoculated leaves, and in 26 single-leaf inoculations, lesions 17 to 85 mm long developed on branches (five mm in diameter) adjacent to the inoculated leaf. Isolation success from branch lesions was 50%, despite the fact that such lesions were apparently disjunct from the small 1-mm lesions developing on inoculated leaves. Stems of Douglas-fir seedlings (approximately 1 cm in diameter) were wound inoculated (1) in two trials consisting of 10 inoculated seedlings per trial plus 10 controls. After 6 weeks, lesion lengths in the cambium averaged 38 mm (range 12 to 62 mm), and three seedlings were completely girdled. P. ramorum was recovered from 75% of inoculated stems. Mean lesion lengths on seedlings inoculated with P. ramorum were significantly greater (P < 0.05) in both trials than those of control inoculations (mean 9 mm) based on analysis of variance. We have not observed unusual mortality or disease symptoms on overstory Douglas-fir trees in natural forests. The importance of P. ramorum branch tip dieback for growth and reproduction of Douglas-fir is unknown. Douglas-fir is present in many forests in California and Oregon already infested by P. ramorum, yet we have found infection of plants at only one location. At this site, symptomatic Douglas-fir saplings were surrounded by bay laurel (Umbellularia californica) trees with extremely high levels of P. ramorum infection. P. ramorum is known to sporulate prolifically on bay laurel leaves. More studies are necessary to determine if the incidence of P. ramorum in Douglas-fir extends to other locations or if it is limited to this one locale.

References: (1) D. M. Rizzo et al. Plant Disease 86:205, 2002. (2) S. Werres et al. Mycol. Res. 105:1155, 2001.



© 2002 The American Phytopathological Society