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The diversity of pathogen populations is one of their important
intrinsic characteristics. According to Groth and Roelfs (3), an
optimal diversity index should satisfy several conditions. A patho-
gen population is more diverse (diversity index is higher) if (i) it
consists of a larger number of phenotypes for a given number of
isolates; (ii) it is characterized by an even distribution of pheno-
types; and (iii) the number of differences in virulence between
phenotypes is larger. Shannon’s entropy and Simpson’s index are
two diversity indices that are commonly used in plant pathology
studies. They are based on the relative frequencies of different
races. However, they consider nonidentical phenotypes as equally
distinct and ignore similarities of different races. Nevertheless,
some isolates exhibit distinct virulence patterns, while others are
quite similar. Therefore, a diversity index that also reflects this
relationship between isolates would provide more information.
The hierarchical version of Shannon's index (3,8) and the
“weighted mean proportion” (6) were proposed to incorporate a
degree of phenotypic similarity into a measurement of diversity of
pathogen populations. However, grouping of phenotypes in the
case of the hierarchical index of Shannon is rather subjective,
which makes comparative analysis of results difficult. On the
other hand, the “weighted mean proportion” is based on the “all
possible comparisons” of all isolates and, in fact, it is calculated
without regard to a phenotypic structure of population.

Rogers’ index and Nei’s standard genetic distance are two indi-
ces that are commonly used for comparison between two popula-
tions. Rogers’ index is based on the frequencies of the phenotypes
that occur in the populations, regardless of how many virulences
these phenotypes share. Thus, Rogers’ index does not account for
close similarities of pathogen phenotypes that may differ from one
another only by one, or a few, mutations. On the other hand, Nei’s
distance, as applied to plant pathogens, measures frequencies of
individual virulences without regard to phenotype. Thus, Nei’s
distance is better suited for randomly mating sexual populations
than for most plant pathogens that undergo asexual reproduction
in addition to, or in place of, sexual reproduction. A more appro-
priate index of genetic distance for plant pathogens would take
into account both phenotypic frequencies and degrees of similarity
among distinct phenotypes. The “index of mean differences” (6)
was proposed to provide a measure of phenotypic dissimilarity as
a component of distance between populations. However, it is
based on “all possible comparisons” for all pairs of isolates be-
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tween two populations, and it does not consider how many similar
phenotypes these populations share.

The object of this paper is to describe a new index of genetic
distance between populations and a related index of genetic diver-
sity within populations that take into account both phenotypic
frequencies and degrees of similarity among distinct phenotypes.
These new indices are particularly suited to species with popula-
tions made up of clonal lineages resulting from widespread asex-
ual reproduction.

INDEX OF GENETIC DISTANCE BETWEEN
POPULATIONS

The data obtained from testing the virulence of a plant pathogen
to a special set of k differentials are considered. The distance be-
tween two isolates is defined as the number of differentials on
which the isolates respond differently. The distance between two
pathogen populations, A and B, is then defined as follows. To each
isolate sampled from one population an isolate sampled from the
second population is matched so as to minimize the sum of dis-
tances between corresponding pairs of isolates. Finding the best
matches is known as the “assignment problem” in operations re-
search (1), and a number of algorithms have been developed to
minimize the sum of distances (2; Appendix).

Thus, the idea is to take an equal number of isolates, n, from the
two populations and match up the samples of phenotypes so that
there are as few discordant loci (across pairs) as possible. The
distance between the populations is then calculated as the sum of
distances between the matched pairs of isolates. If the samples of
isolates from the two populations are phenotypically identical,
then the distance between them is 0. If the samples are different,
then the distance between the populations is greater than 0. The
distance reaches its maximum value if, and only if, each popula-
tion has a single virulence phenotype, and the phenotypes of the
two populations are absolutely different, i.e., the isolates respond
differently on the entire set of differentials. It is possible to nor-
malize the distance, so that it ranges from O to 1, by dividing the
obtained minimum value of the sum of distances between matched
pairs of isolates, Assyin(A,B), by the product of the number of dif-
ferentials, k, and the number of matched pairs, n,:

Ass,i. (A, B)
n,k

K= 1
in which n, = n, because both samples are of equal size.

Rogers’ index and Nei’s distance, taken separately, provide in-
formation concerning only one aspect of diversity and similarity
between the two populations, and both have to be used jointly to



obtain relatively reliable results of comparison (4,5). In contrast,
the newly proposed K distance provides a comparison between the
two populations on the basis of “optimal” matching phenotypes
with similar virulence patterns. Therefore, K distance enables the
detection of nuances in the comparison between populations that
cannot be revealed even when Rogers’ index and Nei's distance
are applied together.

I will compare properties of Rogers’ index, Nei’s distance, and
K distance. Rogers’ index (9) is calculated by the formula

R= %ilpm = Pml @
i=l

in which p,; and py; are the frequencies of the ith race in popula-
tions A and B, respectively, and # is the total number of different
phenotypes in both populations. Rogers’ index varies from 0, for
two populations with identical race structure, to 1, for populations
with no phenotypes in common.

Nei’s standard genetic distance (7) is aimed at measuring the
difference between two populations on the basis of the frequencies
of alleles at a number of genetic loci. For dimorphic loci, let Pai
and 1 - p,; and py; and 1 - py; denote the frequencies of the two
alleles at the ith locus in populations A and B, respectively. Nei's
standard genetic distance is defined by the formula
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in which, in the case of L loci with just two alleles per locus,
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Nei’s distance values may vary between 0, when the two popula-
tions have identical frequencies of alleles over all the loci tested,
and infinity, if the two populations share no alleles.

Rogers’ index, Nei’s distance, and K distance fulfill the fol-
lowing relations. (i) Rogers’ index for two populations reaches its
minimum value (R = 0) if, and only if, K distance between them is
also minimal (K = 0). (i) The minimum value of Rogers’ index (R
= 0) or K distance (K = 0) implies the minimum of Nei’s distance
(N = 0), whereas the opposite is incorrect (an example is consid-
ered below). (iii) Nei’s distance between two populations is
maximal if, and only if, the K distance also reaches its maximum.
(iv) The maximum value of Nei’s or K distances always results in
the maximum of Rogers’ index, but, conversely, the maximum
value of Rogers’ index does not necessarily imply the maximum
of either Nei’s or K distances.

The following numerical example distinctly shows the different
approaches in the analysis of the data. Consider three isolate
populations, A, B, and C, each of which consists of two isolates
(a1, az; by, by; and ¢, ¢;) with phenotypes as follows:

A B C
ap;: 11111001 by: 11111100 ¢;: 11110001
az: 11110110 b,: 11110011 ¢;: 11111110

The dichotomous structure of the alleles at eight genetic loci is
identical for these three populations, even though they have no
phenotypes in common. It is apparent that the isolate pairs a, and
¢y, & and ¢y, by and ¢,, and b, and ¢, differ in just one out of the
eight virulence loci. On the other hand, all isolates in population A
are different from isolates in population B in two virulence loci.

Nei’s distance between pairs of given populations equals 0,
N(A,B) = N(A,C) = N(B,C) = 0. Therefore, according to the Nei
distance, these three populations do not differ. Rogers’ index as-
sumes its maximal value in cases in which populations have no
phenotypes in common. Hence, R(A,B) = R(A,C) = R(B,C) = 1,
and according to Rogers’ index these three populations are abso-
lutely different. Therefore, if only Rogers’ index and Nei’s
distance are used together in the analysis, it is impossible to dis-
tinguish between three pairs of given populations. The K distance
differentiates between these populations.

Calculate the K distance between given populations. If the
populations A and B are considered, first determine the distances
between all pairs of isolates, one of which is taken from A and the
other from B:

d(ay,byy = 2, because a, and b, are different at two loci, 6 and 8
d(a,,by) = 2, because a, and b, are different at two loci, 5 and 7
d(ay,b,) = 2, because a, and b, are different at two loci, 5 and 7

d(ay,by) = 2, because a, and b, are different at two loci, 6 and 8

According to the definition of K distance, only two possibilities
exist for matching isolates from the populations A and B. The two
corresponding pairs are (i) @, and by, a, and b,, or (ii) a, and by, a,
and b,. Hence, Ass,i(A,B) = 4 is the minimum of d(a;,b)) +
d(ayb,) = 4 and d(a,,b,) + d(ayb,) = 4, and the K distance be-
tween the two populations, A and B, is K(A,B) = 4/(2 x 8) = !/s. In
the same way, Ass,i,(A,C) = 2 is the minimum of d(ay,c)) +
d(axyc;) = 1 + 1 =2 and d(a,,c;) + d(ayc)) =3 + 3 = 6, and
AsSpin(B,C) = 2 is the minimum of d(b,,¢,) + dbye))=3+3=6
and d(b,,c;) + d(b,c)) = 1 + 1 = 2. Thus, K distances between A
and C, and B and C are K(A,C) = 2/(2 x 8) = '/s and K(B,C) = 2/
(2 x 8) = '/s, respectively. Therefore, the K distance reveals that
the populations A and C are more similar than A and B.

The following remark relates to estimating the dissimilarity
between populations in the case in which samples A and B, from
two populations, are of different sizes. When sample sizes are not
equal, one solution is to expand their sizes. For example, sample A
is expanded to a larger sample A’, in which the number of isolates
of each phenotype is multiplied by some number r,. Thus, if there
are n, isolates in sample A, there will be ryn, isolates in sample
A’. Similarly, the size of sample B is expanded from ny isolates to
rgng isolates in sample B’. The numbers r, and ry are chosen to
yield the lowest number divisible by both n, and ng (that is, the
lowest common multiple, lem(ns,ng), of n, and ng). Therefore,
lem(na,ng) = rang, lem(na,ng) = rgng, and the generated samples
A’ and B’ will contain r, and ry copies of each isolate from A and
B, respectively. For example, for n, = 12 and ng = 15, ra=>5and
rs = 4, so that the size of A” and B’ is lem(12,15) = 60. It is obvi-
ous that the original relative frequencies of phenotypes in A and B
are preserved in the new samples A’ and B’. Hence, formula 1
adjusted for samples A” and B’ can be used to calculate the K dis-
tance between populations:

Ass, . (A',B")

k= npk

1)
in which the number of matched pairs, n, equals the size
lem(na,ng) of samples A” and B’, and k is the number of differen-
tials.

While this approach works, it could be very cumbersome. For
example, suppose n, = 50 and ng = 51. This would require ex-
panding samples A and B to 2,550 isolates with 51 copies of each
isolate from sample A and 50 copies of each isolate from sample
B. It would take a lot of time and computer memory to make the
comparisons among so many isolates. The following solution can
be proposed in this case. Since each sample is presumably a ran-
dom sample from the population it represents, one can randomly
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select 50 isolates from sample B to compare with the 50 isolates
in sample A and calculate the index. Such indices can be calcu-
lated several times with different random samples of 50 isolates
from sample B. Then the average value of the indices can be used
as genetic distance between the two populations.

INDEX OF GENETIC DIVERSITY WITHIN
POPULATIONS

Diversity indices that are commonly used in plant pathology
studies consider nonidentical phenotypes as equally distinct and
ignore the number of differences in virulence between isolates,
property 3 of Groth and Roelfs (3). Such indices are Shannon’s
entropy (Sh) (8)

Sh=-3, pnp, 4

i=l

and Simpson’s index (i) (10)

Si=1-Y p* (5)
i=l
in which p; is the frequency of the ith phenotype, and n is the total
number of distinct phenotypes. The “assignment problem” can be
used for generating a diversity index that also considers similarity
of response patterns of isolates.

Consider an arbitrary sample from a pathogen population, A,
that is presented by n patterns of dichotomous responses of its
isolates to some set of k factors. The distance between two iso-
lates equals the number of factors to which the isolates respond
differently. To each sampled isolate, match an isolate from the
population to make up n pairs so as to maximize the sum of dis-
tances between corresponding pairs of isolates. Finding such
matches can be realized by the solution of the appropriate
“assignment problem.” The proximity between two isolates is
defined as the number of differentials on which the isolates re-
spond similarly. Thus, proximity = k — distance. The sum of dis-
tances between matched pairs of isolates is maximal, so the sum
of proximities is minimal. Therefore, if Ass’yin(A,A) is the ob-
tained minimum value of the sum of proximities, then the maxi-
mum value of the sum of distances equals Assyn(A,A) = nk —
Ass® min(A;A)'

The new diversity index, Ko, of the given pathogen population
A can be determined by dividing the obtained maximum value of
the sum of distances between matched pairs of isolates,
AsSmu(A,A), by the product of the number of differentiating fac-
tors, k, and the number of sampled isolates, n:

Ass,, (AA)

Ko= — (6)
The diversity index, defined in such a way, ranges from O to 1.
The only case in which the diversity score is assigned 0 corre-
sponds to a population that is limited to a single phenotype. The
maximal diversity score is assigned to a population with pheno-
types occurring in equal frequencies, provided that the sample
consists of pairs of isolates with absolutely different response
patterns on the entire set of differentiating factors (in particular,
for a population with all 2% possible phenotypes).

Shannon’s and Simpson’s indices also maintain the following
properties: (i) when a given set of phenotypes is prescribed, they
assign maximum diversity to a population that is divided equally
among them (this is, in fact, property 2 of Groth and Roelfs [3]);
and (ii) if the number of phenotypes in two populations is differ-
ent, and the phenotypes within each population are equally dis-
tributed, the higher diversity index must be assigned to the popu-
lation with more phenotypes (this is property 1 of Groth and
Roelfs [3], if evenness of phenotype distribution is fulfilled). Both
these properties are not generally compelling when the distance
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between isolates (property 3 of Groth and Roelfs [3]) is also con-
sidered. The extent of the similarity among isolates contributes
considerably to the diversity within a population and is not less
important than the relative frequencies of different phenotypes.
This fact will be further demonstrated by examples.

Thus, the Ko index preserves some of the properties of Shan-
non’s and Simpson’s diversity indices, but not all of them in their
absolute form. It enables one to reveal nuances in structure of
populations, which cannot be established by these two indices.

The following examples demonstrate properties of Ko diversity
index as compared with those of Shannon and Simpson. Three
isolate populations, A, B, and C, are considered, each of which
consist of two isolates tested on six host differentials with pheno-
types as follows:

A B c
a;: 111000 by: 111100 ¢z 111110
a,: 000111 by: 001111 ¢: 011111

Calculate the Ko diversity index for population B. Four different
ordered pairs of isolates are possible: (by,b)), (b1,bs), (b2,by), and
(by,by). The distances between the paired isolates are determined
as follows:

d(blsbl) = d(b2$b2} = 0\
because these two pairs consist of identical isolates

d(b,,by) = d(by,b)) = 4,
because b, and b, are different at four loci, 1,2, 5, and 6

Only two possibilities exist for matching isolates from population
B to themselves. The two corresponding pairs are (i) b, and by, by
and b,, or (i) b, and b,, b, and b,. The solution of the “assignment
problem” (matching isolates for maximum) is the maximum of
d(by,by) + d(by,by) = 0 and d(by,by) + d(ba,by) = 8, i.e., Assyu(B,B)
= 8. Dividing this value by 2 x 6 = 12, the Ko diversity index for
population B is Ko(B) = %/s. In the same way, AsSpa(A,A) = 12 and
As$m(C,C) = 4 for populations A and C, respectively. Dividing
by 12, the Ko diversity indices for these populations are Ko(A) = 1
and Ko(C) = '/3. Thus, Ko index reveals the difference in diversity
of the considered populations, which results from the difference in
the measure of dissimilarity between isolates within these popula-
tions. In contrast, both Shannon’s and Simpson’s indices are equal
for the given populations: Sh(A) = Sh(B) = Sh(C) = In2 and Si(A)
= Si(B) = Si(C) = 0.5.

The following example relates to the assignment of the maxi-
mal score of Ko diversity index. Consider the response patterns to
three host differentials of isolates from four pathogen populations:

D, D, D, D,
110 110 110 000
110 110 001 100

110 001 100 010
110 001 011 001

001 100 010 110
001 100 101 101
001 011 011
001 011 111

The last population, D, consists of all 2* = 8 possible phenotypes oc-
curring in equal frequencies. Both Shannon’s and Simpson’s indices
establish the difference in diversity among the given populations:
Sh(D)) = In2, Sh(D,) = In4, Sh(D;) = In6, and Sh(D,) = In8, and
Si(D,) = 'fa, Si(D,) = *4, Si(D3) = /s, and Si(D,) = "/s. Moreover,
according to these results, diversity increases from populations D,
to Dy. In contrast, Ko index is maximal (equals 1) for all these
populations, i.e., they are considered as equally diverse.



Additional insight into the comparison can be obtained by con-
sidering the collections of pairwise distances in each population.
If dj; is the distance between isolates i and J» then the average dis-
tance between the isolates of each sample can be calculated by the
formula

4 =d(D)=—73d; k=1,23,4

Ry ij=t

Here, n; is the number of isolates, so that there are n? entries in
the distance matrix. The absolute deviation from the average dis-
tance can be expressed by the formula

1 M —
s =sD)=—5 Y |d;-a| k=1,2,3,4
=1

According to these formulas, d, = d, = dy = dy = 1.5 and s, =
1.5, 55 =1, 53 = 0.83, and s, = 0.75. Thus, the average distance is
the same for all these samples, whereas the deviation decreases
from populations D, to D,. Therefore, a greater number of differ-
ent phenotypes in a population increases its level of diversity.
However, the measure of variance between distinct phenotypes
decreases from population D, to population D,. Therefore, the
former effect is compensated by the latter one, which enables one
to suppose the equal maximal level of diversity for all these
populations.

Consider two populations, A and B, each of which consists of
three isolates tested on eight host differentials with phenotypes as
follows:

A B
a,: 00111111 by: 00000001
ay: 11000000 by: 11000000
as: 10000000 bs: 10000000

The relative frequencies of the different phenotypes within each
population are equal (p; = /3, i = 1, 2, 3), and these populations
are equally diverse according to the indices of Shannon and Simp-
son. The Ko index is different for these populations: Ko(A) =
16/(3 x 8) = %/3 and Ko(B) = 6/(3 x 8) = !/s; and, therefore, popu-
lation A is more diverse than population B.

Two populations, A, and A,, are made up of population A to
which an additional isolate was duplicated (a, = a;in A, and a, =
a, in A,):

A, A,
a;: 00111111 as: 00111111
ay: 11000000 a;: 00111111
ay: 10000000 ay: 11000000
ay. 10000000 ay. 10000000

Thus, they consist of three distinct phenotypes with unequal rela-
tive frequencies: p, = p, = Y4, and p; = /2. Tt is easy to see that
populations A, and A, are equally diverse according to Shannon
and Simpson, and they are less diverse than A. Ko index gives the
following values: Ko(A,) = 16/(4 x 8) ="'/ and Ko(4,) = 30/(4 x 8)
= Y16, i.e., population A, is considerably more diverse than A,.
But the most important result is a direct consequence of the ine-
quality Ko(A,) < Ko(A) < Ko(A,): when a given set of phenotypes is
prescribed, Ko index does not necessarily assign maximum diver-
sity to a population that is divided equally among them. The Ko in-
dex for population A is not maximal, even though the three pheno-
types occur at equal frequencies, because Ko(4,) = 516 > %3 =

Ko(A), and population A, consists of the same phenotypes as pop-
ulation A with unequal frequencies. It seems reasonable to regard
the two similar phenotypes in A, as “virtually the same” and, thus,
to regard population A, as being composed of equal proportions of
two very different phenotypes. Likewise, it seems reasonable to
regard population A as being composed essentially of two pheno-
types, one at %3 and one at /3 frequency. By this reasoning, one
should regard population A, as more diverse than population A,
even though Shannon’s and Simpson’s indices lead to the opposite
conclusion,

One more characteristic property of Shannon’s and Simpson’s
diversity indices is not generally implemented for Ko index: a
higher score of Ko index is not necessarily assigned to the
population with a greater set of phenotypes, if the relative
frequencies of the different phenotypes in each of two populations
are equal. This can be exemplified in the following populations:

A B
a;: 10000000 by: 00001111
az: 11000000 b,: 11110000

as: 01000000

According to Shannon’s and Simpson’s indices, population A is
more diverse than B. In contrast, Ko(A) = 4/(3 x 8) = /s is consid-
erably less than Ko(B) = 16/(2 x 8) = 1, which infers a higher
level of diversity for population B as compared with A.

APPENDIX

Some computer programs for the “assi gnment problem” can be
found in the “List of Interesting Optimization Codes in Public
Domain,” which is compiled by Jiefeng Xu of the University of
Colorado at Boulder (xu@benji.colorado.edu). This list has a bias
towards Unix platforms. The codes can be retrieved via anony-
mous ftp: (i) Site: ftp://netlib.att.com in /metlib/toms, File: 548.Z,
Language: Fortran; and (ii) Site: ftp://ftp.bilkent.edu.tr at
/pub/IEOR/Opt/goldberg directory, File: csas.tar.z, Language: C.

The reader needs to prepare a matrix of distances between all
pairs of isolates as input to the programs.
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