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To predict the spatial and temporal development of a plant dis-
ease epidemic, one needs to quantify the dispersal of inoculum
from a focus of disease. But, over what range of distance is this
information needed?

To answer this question, one usually measures dispersal ex-
perimentally in the field. The results of such an experiment may
then be described by an empirical function. However, the general
applicability of a fitted dispersal function is intimately tied to the
range of distance over which data are taken. Also, the experimen-
tal limits of detection can artificially reduce the effective range of
distance by censoring data at larger distances from the source of
inoculum. An examination of the biases introduced into regression
analyses by the geometrical details of the experiment is needed.

Dispersal has most frequently been measured only in close
proximity to a source (<5 m), and empirical models fitted to such
data are valid only over this range of distance (3,17). The spread
of inoculum to larger distances, however, may affect the spatial
spread of disease over time (6,10,13,22,33,42). Epidemics of in-
terest often spread to distances in excess of 100 m (20,30). Thus,
some assumption about how to extrapolate short-distance meas-
urements to a more general, longer distance distribution of inocu-
lum dispersal is often necessary (14,30,31,32,43,44,45). Gregory
(20) and Fitt and McCartney (18) have pointed out the danger of
extrapolating a regression equation beyond the fitted distance
range. Although the results of any one experiment should not be
extrapolated beyond the measured range, it may be possible, by
using a wide range of observations covering varying ranges of
distance, to obtain general guidelines for extrapolation within
reasonable margins of error.

The two most common mathematical models used to fit the ob-
served dispersal of propagules from a focus of disease are the
power law model (20):

ye=d'x? (1A)
and the exponential law model (27):
ye=A'e™ (1B)

in which y is either the deposition density of particles or the re-
sulting lesion density on host plants located at distance x from the
focus of the disease. As noted elsewhere (2,18), the major differ-
ence between these two expressions is that the exponential law
has an implicit length scale, / on the order of B!, whereas the
effective length scale of the power law increases with increasing
distance (2). The use of this length scale, /, has been advocated
because it is easier to visualize (16,18). However, easy visualiza-
tion may also lead to misconceptions. In what follows, I will show
that values of / reported in the literature are strongly dependent on
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the geometrical details of the experiment used in their determina-
tion. As such, the usefulness of / as a general descriptor of
dispersal is questionable.

The above two models are usually first transformed by taking
the natural logarithms, yielding:

Inyp=a-b-Inx (2A)

and
Inyg=A-B-x (2B)
in which
a=Ina andA=InA’

The model parameters are then fitted by linear regression of In yp
on In x for the first expression and In yg on x for the second (18).
The validity of these regressions hinges on the assumption that the
variable y is distributed as a log-normal variate. Such a distribu-
tion occurs when a variable can be expressed as the product of
many normal variates (36). One can think of these factor variables
as a sequence of efficiencies for transport, deposit, wash-off,
spore survival, spore germination, and, eventually, infection of the
host plant. This is not an unreasonable assumption if counts of
lesions or spores remain high enough to keep the stochastic error
due to counting at a reasonable level.

The relative suitability of these two empirical fits is usually
evaluated by direct comparison of the coefficients of determina-
tion, 72, obtained from the two linear regressions. This comparison
can be performed in either the log-transformed space (16,18) or
the real space (2). However, any conclusion based on such com-
parisons without an examination of the errors involved in the de-
termination of the respective »* values is suspect.

Thus far, a great deal of effort has been placed on the experi-
mental differentiation of these two empirical equations (2,16,18).
However, over a finite length scale these two functions can be-
have very much alike. One of the implicit problems in any com-
parison of these two models, based on a measure of relative good-
ness-of-fit to experimental data, lies in the high degree of correla-
tion that exists between the two alternative spatial variables (x and
In x). This correlation will explicitly depend on the location of the
data collection points distributed over the experimentally chosen
range of distance. The manner by which this collinearity con-
founds regression analysis has not been investigated.

The purpose of this letter is threefold: i) to more closely exam-
ine the effect of collinearity on the linear regression procedures
used to fit disease and dispersal gradients to exponential and
power law functions of distance, ii) to examine the implementa-
tion of these fitting procedures to experiments reported in the lit-
erature, and iii) to attempt to generalize the overall behavior of the
length scale parameter fitted to various observations in terms of
the pertinent experimental geometry.



COLLINEARITY AND REGRESSION

To explore the relation between equations 1A and 1B, I will start
with a specific example. Assume A”= 10 and B = 1 m™ in equation
1B so that: yg = 10 ¢™ (Fig. 1, solid line). The power law model
(equation 1A) can be fitted to this function if we take the natural
logarithm of y; and then perform a linear regression on In x. The
results of the above regression will depend on the range of distances,
x, over which the regression is performed, as well as on the number
and spatial distribution of the data points used in the regression. For
10 equally spaced data points between 0.1 and 1 m, the resulting
linear regression has a coefficient of determination of 0.906 (Table
1, first column; Fig. 1, dashed line). Repeating this procedure for B
=2m™ (yg=10e*)and B=3 m™ (yg = 10 &) illustrates that the
regression scales perfectly with changes in the value of B (Table 1,
columns 2 and 3). This scaling is seen graphically in Figure 1 (main
panel). If the straight line corresponding to B =2 m™ (yg = 10 e
Fig. 1, dot-dash line) is scaled so that it overlies the original straight
line (Fig. 1, solid line), then the regression lines (Fig. 1, dotted and
dashed lines) merge, as well. I now define f to be the ratio of x,, to
Xy (€., f = XpudX,,), in Which x,,, and x,,, are the minimum and the
maximum distance from the source to the data points, respectively.
Thus, for a given value of f, the linear regression between yg and yp
can be characterized by a single curved line-straight line pair plotted
between X, and x,,, on the x-axis and between In[yg (x,.,)] and In[yg
(xnn)] on the y-axis. The results of the above scaled regression for
values of f= 10, 30, and 100 are shown in Figure 2.

Mathematical details. Given that dispersal data are obtained at
the n distances, x; (i = 1 ... n), the product-moment correlation
between x; and In x;, R, can be expressed as:

]z:l(x,-—f)-(lnx,.—lnx) 3)

Rype=—
xinx n; Gx -Glnx

in which the overbar denotes the mean value, and oy, and o, are
the sample standard deviation of In x; and x;, respectively. For any
given experiment, the value of the above correlation will depend
on the actual geometrical location of the data collection sites.
However, the sums in equation 3 can be approximated by integrals
if we know the density of data collection points as a function of
distance. This procedure results in:

B[ -1-2 )
xInx 2.J(f_1)2{(f_1)2_f-[1n(f)]2}

(4A)

if the points are uniformly distributed in x space, and:

In [y, (Xmn )]

e T—

N[y m)l . .
X

mn Distance
Fig. 1. Plot of deposition density y vs distance x (inset) and In y vs In x (main
panel) for yg = 10e™ (solid line), yg = 10~ (dot-dash line), and their re-
spective power law fits (dashed line and dotted line, Table 1 columns 1 and
2).

o Y6NGT-D (-2 -1
wins = G-D-In(F)

(4B)

if the points are uniformly distributed in In x space. Note that
R, i is independent of the fitted parameters (B and b) and only
depends on the ratio of x,, to x,,(9). The above approximations
for Ry, are presented for the sake of discussion. Their accuracy
depends on the true geometric distribution of data collection
points. For any particular experiment, the exact value can easily
be determined from direct evaluation of the product-moment cor-
relation (equation 3).
Consider now the linear regression of equation 2A on equation 2B:

an’P=a—b]nx=InyE+E=A_Bx+£ (5)

In the above regression equation (equation 5), the parameters a
and b are assumed given, and the remaining two parameters (A
and B) must be chosen so as to minimize the sum of the square
errors, Le2.

The solution to the above regression yields the following rela-
tion between B and b:

B =1/l = bR, )y 01,/ ©)

in which oy, and o, are the sample standard deviations of In x; and
X; (i = 1 ... n), respectively. Combining equation 6 with equation
4A or 4B yields:

K = Xpn) (f-n?
[ =~Zmx —Zmn) TA
% -1-2f ()] n
assuming an homogeneous distribution in the x; space, and:
(X = X,,)
= (7B)

assuming an homogeneous distribution in the In x; space. The co-
efficient of determination in the above regression, 7%, is the
square of the product-moment correlation (equation 3, Fig. 3).

To discuss the two empirical fits (equations 2A and 2B), it is
useful to define the product-moment correlations between In y;
and x;, Ry, ., and between In y; and In x;, Riny e in analogy with
equation 3. The coefficients of determination for the power law
model, 7y, and the exponential law model, r%,,,, can then be
obtained by squaring the appropriate correlations.

STEPWISE REGRESSION

The question at hand is to examine whether or not there is suffi-
cient reason to favor one empirical fit over the other (equations
2A and 2B). Because of the strong collinearity between these two

TABLE 1. Fitted parameters for power law model (equation 2A) obtained by
regression to data generated using the exponential law equation (equation
2B). Regressions were performed for 10 equally spaced data points between
Xmn = 0.1 m and x,,,, = 1.0 m for various values of parameter B (equation 2B)

YE 10 e~ 10 e 10 e+
Disease level at x =1 m (a’; eq. 1A) 4,226 1.786 1.325
Standard error of the estimate 0.099 0.197 0.296
Exponent in the power law (b; eq. 1A) -0.393 -0.786 -1.180
Standard error of b 0.045 0.090 0.135
Coefficient of determination, r? 0.906 0.906 0.906
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functions, it would be advantageous to separate each function into
two independent components. One component should represent the
commonality in shape between the two functions, and the second
component should represent the difference in shape. To this end, I
introduce the following ortho-normal pair of predictor variables:

(Inx,—Inx) . (x-%)

= ®)

0.h'l.\' o
2-(1R

x,nx )

Z, =

Note that Z, is a functional average of the x and In x functions and
that Z_ is a measure of the difference between these two functions.
One now performs a stepwise linear regression using the model:

|I'1y = Cn + C,,,Z.‘, + C.,Z_ (9)

in which the C parameters are fitted by regression.

One can conceptualize the nature of all of the above regressions
(equations 2A, 2B, 5, and 9) in terms of a three-dimensional space
defined by Z,, Z_, and an error axis, €, that is normal to the Z,-Z_

=10 -~ 30

In [ Yy %) S

In [y (X IL

0 X mx

Fig. 2. Comparison of yg (solid line) and fitted value of yp for various values
of the ratio of farthest distance to nearest distance, f.
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f

Fig. 3. Plot of the coefficient of determination for the In yg (equation 2A) vs
In yp (equation 2B) regression vs In f for equally spaced points in x space
(solid line, the square of equation 4A), equally spaced points in In x space
(dotted line, the square of equation 4B), and the regressions shown in Figure
2 (squares).
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plane (Fig. 4). The data vector, In y, will lie above this plane with
a vertical component, s, corresponding to the error in the Z,, Z_
regression, in which s? is equal to the residual sum of squares
from the above model (equation 9, Fig. 4). The power law, P,
and exponential law, E, models can be conceived of as two
vectors lying in the Z,-Z_ plane (Fig. 4). The cosine of the angle
between any two vectors is equal to the product-moment
correlation, so that Ry, = €OS O, Ryyy1px = COS B, and Rypyx = cOS Y
(Fig. 4).

If the data vector lies directly above the Z,-axis in Figure 4,
then C_= 0 (B = y), and the data are described equally well by
the power law or exponential model. Thus, the statement that
the exponential law and the power law fits can be statistically
differentiated is equivalent to rejecting the null hypothesis
Hy:C_ = 0. This can be accomplished by comparing the value of
F,.,,, .z, the extra sum of the squares because of the inclusion of
Z_in equation 9, with s* by an F(1, n — 3) test (11,40), in which
n — 3 is the number of degrees of freedom on which the estimate
of error, 52, is based (11). Defining the projection of the data
vector (In y; Fig. 4) on the Z, and Z_ unit vectors as R, and R_,
respectively, this comparison can be obtained from an extension
of the Pythagorean theorem: (In y)2 = s* + R,% + R_%. The value
of this F is given by:

F= (n=3) iy (10)

2 2
a “layz, rIn‘)'.Z_)

Using the definitions of Z, (equation 8) and the known correla-
tions between x, In x, and In y, equation 10 becomes:

Fig. 4. Geometric representation of regressions discussed in text. The vector
labeled In y represents the log transform of the observed data. P and E are
unit vectors representing the power law (In x) and exponential law (x) inde-
pendent variables. Z, are the transformed regression variables defined in
equation 8. The g-axis corresponds to the error, s, not fit by the regression in
equation 9.



_ (n—-3)-(1+ Rx_lnx}' (Rlny,tnx _‘Rln_v.al:)I
2-(1= e = Ty = Kaying + 2R, s Riny o R

dnx ~ Tlnyx T Mlny Inx xInx Iny.Inx

an

To apply this test, the various correlations appearing in equation
11 are calculated and the value of F obtained is compared with
tabulated values (40). If the F value is significant, then one is jus-
tified in rejecting the null hypothesis (Hy:C. = 0), and one of the
two models (equations 2A and 2B) provides a significantly supe-
rior fit to the data.

GEOMETRICAL MODEL

I propose a simple geometrical model to predict the observed
length scale obtained from a regression of In y on x. Deposition
about a point source is assumed to be described by an inverse
square law of distance, so that b = 2 in equations 7A and 7B. This
“Radiative model” (5) assumes that spores travel analogously to
radiation in straight lines away from their point of origin and,
thus, spread out in both the vertical and horizontal directions. If
the source of inoculum is a line with a length greater than x,,,, then
I will assume b = 1 in equations 7A and 7B (20), since the hori-
zontal spread of spores will have no effect on spore deposit. In
addition, to account for the effect of source size on the initial spa-
tial variance of the spore cloud for an extended source, I make an
ad hoc assumption that all distances be increased by an amount r,
defined below. This is analogous to the empirical modification of
the power law suggested by Mundt and Leonard (34). Using
equation 7B and the above assumptions, I propose the following
predictor equations for length scale, I:

_ (Xpe = Xn)
= e, + 7)) (o #1701 (12A)
! e = ) (12B)

L n(x,, +1,)/(x,, +17,)]

in which r, is the half-width of the source, which, for an extended
area source (a generalized point source equation 12A, subscript P)

of length L and width W, is defined by r, = (LW)"%/2, and for a
line source of length L and finite width W (generalized line source
equation 12B, subscript L), is defined by r, = W/2. The derivation
that led to equations 12A and 12B could also be performed using
equation 7A for spatially homogeneous data points in the real
space. However, over the range of values reported for x,,, and x,,,
in the literature, this algebraically more complicated result is well
approximated by equations 12A and 12B. Note that equations 12A
and 12B depend only on the experimental geometry, and all of the
necessary parameters (X, X.,, and r,) are known before data are
even collected.

RESULTS AND DISCUSSION

Linear regression analyses (equation 9) were applied to 105
profiles obtained from the literature (Table 2). The regression re-
sults revealed that 51 of the data sets were fitted better by the ex-
ponential law model and 54 were fitted better by the power law
model, based on a simple comparison of the coefficients of deter-
mination (r%). However, further analyses based on the F test crite-
rion (equations 12A and 12B) revealed that only six of the 51
cases favoring the exponential law model and 15 of the 54 cases
favoring the power law model were significant (P < 0.05, Table
2). In general, experiments with a point source of inoculum tended
to favor an exponential law fit, and experiments with line sources
of inoculum favored the power law.

In making the above 105 comparisons, one expects some spuri-
ous false positives (Type I error), Remembering that both tails of
the distribution are flagged at the 5% level, pure random chance
would predict nine cases that mistakenly favor the exponential law
and nine cases that mistakenly favor the power law (40). Overall,
the above collection of comparisons showed little preference for
either empirical model, as 80% of the profiles were described
equally well by the power law (equation 1A) or the exponential
law (equation 1B) equation. This is in basic agreement with the
results of Fitt et al. (16) and bold testimony to the fact that these
two functions can behave very similarly.

Taken singly, the results of these experiments can be well de-
scribed by the exponential law. However, the values of ! predicted

TABLE 2. Literature references and geometrical details for the 105 dispersal profiles used in the text

Authors Reference Xpy (M) Xy (M) r, (m) f { (m)
Point sources
Alderman et al. 1 0.15 1.4 0.3 6-9 0.2-0.4
Brennan et al. 8 0.1 0.8 0.05 4-8 0.04-0.1
Cammack 9 5 40 0.1 8 7-9
Fatemi and Fitt 12 0.1 0.9 0.05 5-9 0.1-0.2
Ferrandino and Aylor 14 1 16 0.5 5-8 0.8-3.3
Fried et al. 19 0.12 8 0.1 67 1.2-1.5
Jeger et al. 23 0.4 2 0.1 5 0.3
Jones and Newhall 25 25 302 20 12 T1-17
Minogue and Fry 32 0.5 9 0.5 5-10 0.4-1.4
Newhall 35 37 1,000 12 28 120
Sreeramulu and Ramalingam 41 2.5 45 0.01 3-12 5-16
Extended area sources
Heald et al. 21 4.6 127 64-120 15-26 60-170
Johnson and Dickson 24 12 130 11 11 18
McCartney et al. 29 0.5 19 23 37 11-14
Raynor et al. 37 1 60 9 60 13-21
Roelfs 38 2 73 32 37 24-30
Schneiderhahn 39 59 4,830 400-1,000 2-20 2,000-2,800
Line sources
Aylor 2 0.1 37 0.4-0.7 30-37 0.7-1.7
Aylor and Ferrandino 4 1.6 29 0.2 7-18 2-7
Bertrand and English 7 1.2 38 0.1 8-32 1.4-6
Ferrandino and Elmer 15 0.5 32 0.5 8-32 1.4-8
Gregory 20 1 30 0.7 20-30 4-8
Keitt et al. 26 46 137 12 3 71
McCartney and Bainbridge? 28 0.15 1.5 0.05 10 0.4-0.7

2 In this study, deposition was totaled within annular rings. This is equivalent to a line source (20).
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by regression analysis (Table 2) range over four orders of magni-
tude. Thus, it is impossible to fit all the profiles with one length
scale. The generality of the power law model fares much better.
To test the model embodied in equations 12A and 12B, the ob-
served length scales, /, are plotted versus the appropriate predic-
tions (lp or [, depending on the source geometry) in a log-log plot
(Fig. 5). The model predictions are based on an assumed inverse
square law of distance and depend only on the geometrical details
of the experiment (equations 12A and 12B). The standard error of
the observed length scales about the 1:1 line in Figure 5 is 0.32,
which corresponds to relative standard error of about 33%. This is
quite remarkable considering the great variation in wind speed,
particle size, canopy height, and vegetation density represented in
the experimental sample. Given the complexity of the release,
transport, and deposit of spores, it is interesting and encouraging
that so much of the variation in the observed behavior can be de-
scribed in terms of the experimental geometry.

The strong dependence the length scale obtained from a regres-
sive fit to the exponential distance law (equation 2A) on the geo-
metric vagaries of a particular experiment suggests that / may not
be a suitable parameter to describe spore dispersal in an epidemi-
ological model. Furthermore, one must be wary in interpreting any
derived dependence of fitted length scale upon meteorological or
biological variables without first examining the geometry of the
experiment. As an example, Bertrand and English (7) found that
wind speed had a strong effect on the fitted dispersive length scale
for conidia of Valsa leucostoma released in the rain. However, in
their experiments, increased wind speed also increased the overall
magnitude of spore dispersal that allowed measurements out to
larger distances. In general, any variable that affects the amount of
spores released may change the distance range of measurements
and, therefore, geometrically bias the fitted value of the length
scale.

CONCLUSIONS

A geometrical dispersal model has been presented that explains
most of the observed variation in fitted dispersive length scale
over four orders of magnitude (0.13 m to 2800 m). The success of
this model (equations 12A and B, Fig. 5) provides a guideline for
extrapolation of short-ranged dispersal measurements to larger
distances. That is not to say that the inverse square law is the cor-
rect mechanistic model for dispersal. Rather, these results suggest
that the underlying geometrical principles embodied in equations
12A and 12B are common to all the above dispersal experiments.
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» ° o
g 1000, P
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g o ] 1
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0.1 1.0 10.0 100.0 1000.0 10000.0

Predicted length scale (m)

Fig. 5. Plot of In / from the observed dispersal profiles reported in Table 2 vs
the log of the predictive equation (equations 12A and 12B). Point sources
(filled circles), extended point sources (open circles), and line sources (open
squares).
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The results of any one experiment can always be better fit by an
empirical equation valid only within the distance range of meas-
urement. However, the above analyses suggest that the assumption
of a dispersive length scale determined by geometrical extent re-
mains robust over a large range of distances and meteorological
conditions. Thus, the distance range over which dispersal must be
quantified will be directly determined by the size of the field un-
der study.
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