Applications of KOH-Aniline Blue Fluorescence in the Study of Plant-Fungal Interactions

M. E. Hood and H. D. Shew

Department of Plant Pathology, North Carolina State University, Raleigh 27695.

We thank the following people for contributions of specimens or organisms: M. Starrett (Department of Horticulture, NCSU) for ericoid mycorrhizae of mountain andromeda; W. Gutierrez (Department of Plant Pathology, NCSU) for ascospores of Sclerotinia sclerotiorum; S. Leath (Department of Plant Pathology, NCSU) for powdery mildew of wheat; C. E. Main (Department of Plant Pathology, NCSU) for blue mold of tobacco; J. Antonovics (Department of Botany, Duke University, Durham, NC) for Ustilago violacea inoculum and Silene alba seed; L. F. Grand (Department of Plant Pathology, NCSU) for samples of Monilia liniaria on Prunus virginiana and Oidium monilisoides on Apogymnus repens from the Mycological Herbarium, Department of Plant Pathology, NCSU; and T. Creswell (Plant Disease and Insect Clinic, NCSU) for Fusarium sp. on Solanum melongena. The remaining specimens were prepared or collected by the authors.

Accepted for publication 8 April 1996.

ABSTRACT

A KOH-aniline blue technique for fluorescent staining of fungi in association with plant tissues was developed. The technique provided rapid, simple, and effective documentation of plant-fungal interactions with specimens representing the Deuteromycotina, Ascomycotina, Basidiomycotina, and Mastigomycotina. Applications of the technique were investigated, including documentation of host-penetration events, characteristics of host colonization, fungal reproduction, and detection of inoculum. In the standard KOH-aniline blue procedure, fresh specimens were autoclaved for 15 min at 121°C in 50 ml of 1 M KOH, rinsed in deionized water, mounted in the stain solution, and examined with ultraviolet fluorescence. The stain solution was prepared as 0.05% aniline blue dye (CI #42755 or CI #42780) in 0.067 M K2HPO4 at pH 9.0. Modifications of the standard procedure also were tested, including use of variously preserved specimens, alteration of the KOH treatment, and moderate variation of the stain solution. The technique produced a high degree of resolution and contrast between hyphae and host-plant tissues. The resulting documentation supported previous observations and, in some cases, provided new information about the nature of specific host-pathogen interactions.

Additional keywords: histology, histopathology.

Plant health can be greatly influenced by interactions with pathogenic or mutualistic fungi, and microscopic examination of these interactions provides information about the biology of host-parasite relationships and serves as a useful tool for diagnosticians. Staining techniques that aid in microscopic examination by differentiating hyphae from host tissue are fundamental to plant pathology, mycology, and related disciplines. Such techniques have been compiled in recent publications (4,6), and their applications to observational and experimental research include examination of infection and colonization processes, identification of fungal inoculum or hyphal presence in asymptomatic tissue, and other instances in which visualizing a fungus has advantages over less descriptive observational methods. However, staining techniques generally are not categorized by their appropriateness to these types of applications, because staining characteristics of fungi and plant tissues can vary substantially with the particular interaction.

Aniline blue fluorescence has been widely used in botanical histochromy, particularly to stain callose plugs in phloem (14). Although the common name of this stain varies with the author or source (i.e., aniline blue, methyl blue, water blue, Poirrier's blue, cotton blue, and others), the dyes indicated in the current study are aniline blue color index (CI) #42755 and CI #42780 (11). The fluorochrome, which comprises a small portion of these aniline blue dyes, was critically analyzed by Smith and McCully (17).

These authors demonstrated binding of the fluorochrome to various glucans and plant polysaccharides, and they suggested that the strong association of aniline blue fluorescence with β-1,3-glucans, such as callose, is attributable to loose packing of these polymers, providing greater accessibility to them by the fluorochrome. Other investigators have utilized aniline blue fluorescence to examine glucan composition of fungal cell walls (13,21) and to detect yeast cells in industrial applications (10). A widely recognized use of aniline blue fluorescence in research of plant-fungal interactions is the identification of host-produced callose depositions upon intracellular infection by fungi (9, 18). In addition, a recent article by Williamson et al. (23) described treatment of Pernospora-infected leaves with Carnoy solution (ethanol/chloroform/glacial acetic acid) and NaOH prior to aniline blue fluorescent staining. For these applications, aniline blue stain commonly was prepared at concentrations from 0.005 to 1% in 0.067 M K2HPO4 at pH 8.5 to 10.

Other fluorescent dyes and brighteners also have been applied in the study of plant-fungal interactions. These compounds include 4',6-diamidino-2-phenylindole, ethidium bromide, diethanol, and Calcofluor, as well as the more recent developments of FUNgalase-F' (Anomerien, Baton Rouge, LA) and Fungi-Fluor (Polysciences, Warrington, PA). Some problems commonly encountered with fluorescent stains in researching plant-fungal interactions are the autofluorescence of plant tissues and nonspecific binding of the fluorochrome. The resulting background fluorescence may be sufficiently intense to hinder differentiation of hyphae from host-plant tissues. In general, the usefulness of fluorescent stains is determined by (i) the visual contrast and resolution provided be-
between hyphae and host tissue, (ii) cost, and (iii) ease of use, including rapidity of staining procedures and hazards associated with reagents.

In the current study, a rapid procedure requiring 30 to 40 min and utilizing aniline blue fluorescence is described for staining of fungi in association with host-plant tissues. Our objective was to develop a simple, effective technique to enhance visualization of associations between a broad range of fungal taxa and their respective host-plant tissues. We investigated use of the technique with fresh and variously preserved specimens and tested several modifications to the standard procedure that may have additional benefits under certain experimental conditions. The technique was used to examine various stages in host-parasite interactions, including penetration events, characteristics of host colonization, fungal reproduction, and detection of inoculum.

MATERIALS AND METHODS

Staining procedures. For the standard procedure of KOH-aniline blue fluorescence, fresh specimens were autoclaved for 15 min at 121°C in 50 ml of 1 M KOH, followed by three rinses in deionized water. From deionized water, specimens were mounted on glass slides in several drops of the stain solution and examined with an Axiophot microscope (Carl Zeiss, Thornwood, NY). The microscope was equipped for epifluorescence microscopy with an HBO 100-W/2 mercury burner and G365 nm exciter/LP 420 nm barrier fluorescence filters. The stain solution was prepared at least 2 h prior to use with 0.05% aniline blue dye in 0.067 M K$_2$HPO$_4$ at pH 9.0 (pH adjustment normally was not needed). Stains were stored at room temperature in brown glass bottles for not more than several months. Aniline blue dyes were obtained commercially: CI #42755 (CAS 28631-66-5; F.W. 737.8; C$_2$H$_5$N$_2$O$_2$S$_2$N$_2$) from Fisher Scientific (Pittsburgh) and CI #42780 (CAS 28983-56-4; F.W. 799.8; C$_3$H$_2$N$_2$O$_2$S$_2$N$_2$) from Sigma Chemical Company (St. Louis). From preliminary results, differences were not detected between aniline blue dyes of the two CI numbers, and throughout subsequent investigations, aniline blue CI #42755 was used predominantly.

The following augmentations to the standard procedure were tested: (i) use of specimens that were glutaraldehyde-fixed/ethanol-dehydrated, KOH-preserved, agar-embedded, or air-dried in a herbarium for approximately 100 years; (ii) variation of the time, temperature, and strength of KOH treatments; (iii) moderate variation of the concentrations of stain solution components, including aniline blue dye, K$_2$HPO$_4$, and pH (adjusted with KOH or HCl). These augmentations are described where used with specific interactions.

Preparation of plant-fungal interaction specimens. The specimens examined included Ustilago violacea (Pers.) Roussel (Basidiomycota; anther smut) on Silene alba (Mill.) E.H.L. Krause; Thielaviopsis basicola (Berk. & Broome) Ferraris (Deuteromycota; black root rot) on Nicotiana tabacum L. (tobacco); Hyphomycum ericas (Read) Korf & Kern (synanamorph Pezicella ericae Read) (Ascomycota; ericoid mycorrhizae) on Pieris floribunda (Parsh ex Sims) Benth & Hook (mountain andromeda); Blumeria graminis (DC.) E.O. Speer (Ascomycota; powdery mildew) on Triticum aestivum L. (wheat); Peronospora tabacina D.B. Adam (Mastigomycota; blue mold) on N. tabacum; Fusarium sp. (Deuteromycota; vascular wilt) on Solanum melongena L. (eggplant); Erysiphe lagerstroemiae E. West (3) (Ascomycota; powdery mildew) on Lagerstroemia indica L. (crape-myrtle); Gymnosporangium juniper-virginianae Schwein (Basidiomycota; cedar apple rust) on Juniperus virginiana L. (eastern red cedar); Coleosporium ipomoeae (Schwein) Burrill (rust) on Ipomoea purpurea (L.) Roth. (morning-glory); Oldium monilioides Lk. (teleomorph B. graminis) (Ascomycota; powdery mildew) on Agropyron repens (L.) P. Beauv. (quackgrass); Monilia linihartiana Sacc. (? M. angustior (Sacc.) Reade [5,19]) (Ascomycota) on Prunus virginiana L. (chokecherry); seedborne inoculum on flue-cured tobacco seed (N. tabacum); and airborne inoculum of Sclerotinia sclerotiorum (Lib.) de Bary (Ascomycota).

Inoculations of U. violacea on Silene alba and Thielaviopsis basicola on N. tabacum were conducted under aseptic conditions. Surface-sterilized seeds were placed on Gamborg’s B-5 basal salt medium with minimal organics (Sigma), and seedlings were grown under continuous fluorescent light, Silene alba at 18°C and N. tabacum at 22 to 25°C. Drops (50 µl) of a U. violacea sporidial suspension (1,000,000 sporidia per ml) were applied to leaves of 3-week-old Silene alba seedlings, and leaf infections were observed as whole mounts 5 days after inoculation following the standard procedure. Agar plucks containing hyphae of Thielaviopsis basicola were placed 5 to 10 mm from roots of 10-day-old N. tabacum seedlings, so hyphae of Thielaviopsis basicola grew through the agar and contacted root tissue. Infected roots were observed 24 h after inoculation by excising the specimen as whole mounts embedded in agar. Agar-embedded specimens were treated at room temperature for 4 h in 10 M KOH, rinsed, and stained following the standard procedure.

In addition, 2-week-old greenhouse-grown N. tabacum seedlings were inoculated by drenching the soil with 50 ml of Thielaviopsis basicola endoconidial suspension (2 × 107 endoconidia per ml), and roots were excised and rinsed in deionized water 72 h after inoculation. After rinsing, greenhouse-grown, infected N. tabacum roots were preserved in 1 M KOH for 5 months at room temperature. KOH-preserved specimens were autoclaved, rinsed, and stained following the standard procedure and observed as whole mounts. Other greenhouse-grown, infected N. tabacum roots were fixed upon excision with 2% glutaraldehyde in 0.05 M potassium phosphate buffer (pH 7.2) for 12 h at 4°C. After fixation, roots were washed (3 × 20 min) in the same buffer and dehydrated to 70% ethyl alcohol. Fixed/dehydrated roots were autoclaved, rinsed, and stained following the standard procedure and observed as whole mounts. Fresh specimens of greenhouse- and in vitro-produced Thielaviopsis basicola on N. tabacum also were observed as whole mounts (i) without KOH treatment and with standard staining, (ii) with standard KOH treatment and without staining, and (iii) without either KOH treatment or staining.

H. ericae on Pieris floribunda and B. graminis on Triticum aestivum were allowed to develop under greenhouse conditions. Nine-month-old Pieris floribunda seedlings were inoculated by drenching soil with a slurry of hyphae in deionized water. Roots were excised 2 years after inoculation and examined as whole mounts following the standard procedure. Four- to six-week-old Triticum aestivum seedlings were inoculated by incubation adjacent to diseased (powdery mildew) Triticum aestivum plants. Triticum aestivum leaves were sampled and examined as whole mounts following the standard procedure when powdery mildew symptoms and signs developed.

Peronospora tabacina on N. tabacum was obtained from plants in controlled-environment chambers of The Southeastern Plant Environment Laboratories of North Carolina State University (NCUS), Raleigh. Although the Mastigomycota are not considered true fungi, their growth forms, ecology, and agricultural impact are similar to true fungi, and they are important plant pathogens. Plants were grown under 9 h of fluorescent light with a 1-h incandescent light-interruption period at 22°C day and 18°C night temperatures. N. tabacum plants were inoculated with Peronospora tabacina by atomizing an inoculum suspension (10,000 sporangiola per ml of deionized water) onto leaves, followed by a 24-h dark period. Leaves with symptoms of blue mold were sampled between 4:00 and 6:00 a.m. and were observed as hand-made cross-sections following the standard procedure. Specimens also were observed with 1 M KOH treatments, including (i) room temperature for 5 days, (ii) 80°C for 30 min, and (iii) autoclaved for 15 min at 121°C and stored for 1 month at room temperature; each treatment was followed by rinsing and staining following the standard procedure.
A specimen of *Fusarium* sp. on *Solanum melongena* was obtained from a sample submitted to the NCSU Plant Disease and Insect Clinic. Hand-made longitudinal sections of infected tap root tissue were fixed with 2% glutaraldehyde in 0.05 M potassium phosphate buffer (pH 7.2) for 12 h at 4°C. After fixation, sections were washed (3 times for 20 min each) in the same buffer and dehydrated in up to 70% ethanol. Fixed/dehydrated sections were autoclaved, rinsed, and stained following the standard procedure.

E. lagerstroemiae on *L. indica*, *G. juniperi-virginiana* on *J. virginiana*, *C. ipomeae* on *I. purpurea*, and seed of flue-cured tobacco were collected locally. Powdery mildew of *L. indica* and flue-cured tobacco seed was observed as whole mounts following the standard procedure. Galls of cedar apple rust specimens (*G. juniperi-virginiana* on *J. virginiana*) and symptomatic tissue of *I. purpurea* infected by *C. ipomeae* were observed as hand-made cross-sections following the standard procedure. Sections of cedar apple rust galls also were observed (i) without KOH treatment and with standard staining, (ii) with standard KOH treatment and without staining, and (iii) with neither KOH treatment or staining.

Ascospores of *Sclerotinia sclerotiorum* were vacuum collected on nylon filter disks after release from apothecia. Filter disks were treated following the standard procedure. Ascospores were observed as whole mounts by being scraped from the disks into stain solution on glass slides. Ascospores were additionally mounted in variations of the standard stain solution, including solutions prepared at 0.02 to 1% aniline blue, 0.25 to 5 M K$_2$HPO$_4$, and pH 8 to 13.

Herbarium specimens were obtained from the Fungi Columbian Collection (2) at the Mycological Herbarium, Department of Plant Pathology, NCSU. Specimens were observed as whole mounts following the standard procedure and included *O. monilioides* on *A. repens* collected in 1890 and *M. linhartiana* on *Prunus virginiana* collected in 1897.

RESULTS

The KOH-aniline blue technique was effective at providing descriptive observation and documentation of the plant-fungal interactions with specimens representing the Deuteromyces, Aecyomyces, Basidiozyma, and Mastigomyces (Fig. 1A through P). Substantial hyphal fluorescence was not observed without both KOH treatment and staining. Staining of specimens without KOH treatment resulted in only faint fluorescence of hyphae, strong autofluorescence of foliar plant tissues, and conventional staining of plant-produced callose deposits. For example, in root hairs of *N. tabacum* infected by *Thielaviopsis basicola*, callose deposits around the penetrating hyphae (8) fluoresced distinctly with only aniline blue staining (Fig. 1M). However, when the specimens were treated with KOH prior to staining, hyphae fluoresced brightly with substantial resolution of fungal structures and excellent contrast to host tissue (Fig. 1N). Melanized fungal structures did not fluoresce with any treatment tested, and plant tissues fluoresced in all cases but not such that differentiation of fungi was hindered.

Modifications to the standard procedure also were successful in examining the *Thielaviopsis basicola*-*N. tabacum* system. Agar-embedded specimens that were treated in 10 M KOH for 4 h and then stained maintained the orientation of penetrating hyphae on root hairs (Fig. 1N). In addition, *Thielaviopsis basicola* hyphae in greenhouse-grown, infected *N. tabacum* roots, whether stored for 5 months in 1 M KOH or glutaraldehyde-fixed and dehydrated, fluoresced with equal quality to fresh specimens after treatment following the standard procedure. Infections by *Thielaviopsis basicola* were characterized by thin penetration pegs with terminal swellings that advanced to colonize the host cell (Fig. 1N). Host-produced callose deposits often were not observed around penetration structures after KOH-aniline blue treatment.

Penetration of foliar tissue was observed with *U. violacea* on *Silene alba* specimens. With epifluorescence, the resolution and contrast provided by the KOH-aniline blue technique allowed use of whole mounts and resulted in pseudo-3D representation of infection. Infection hyphae penetrated leaf tissue through stomata (Fig. 1A).

Characteristics of leaf-tissue colonization were observed with *M. linhartiana* on *Prunus virginiana*, *Peronospora tabacina* on *N. tabacum*, *B. graminis* on *Triticum aestivum*, and *O. monilioides* on *A. repens*. The 100-year-old herbarium specimens were restored with the standard procedure (Fig. 1B and E). The extent of colony expansion (Fig. 1B) and even the fine morphology of haustration could be observed in the herbarium specimens as easily as in the fresh specimens (Figs. 1D and E). Intercellular hyphae of *Peronospora tabacina* colonizing *N. tabacum* (12) were observed in cross-sections of leaf veins at the edge of lesions. The hyphal necks of *Peronospora tabacina* on *N. tabacum*, whether treated in 1 M KOH for 5 days at room temperature, for 30 min at 80°C, or autoclaved and stored for 1 month at room temperature, fluoresced with equal quality to fresh specimens after being rinsed and stained following the standard procedure. Hyphae grew almost exclusively in intercellular spaces at the junction of three adjacent leaf-vein parenchyma cells and among leaf-vein vasculature (Fig. 1C). In these leaf-vein cross-sections, hyphae also were observed only in cross-section, indicating directional growth rather than random ramification of hyphae through this tissue.

Intercellular hyphae of rust fungi were observed in leaf tissue of *I. purpurea* infected by *C. ipomeae* and in gall tissue of cedar apple rust specimens. Fluorescence of these specimens by the standard KOH-aniline blue procedure was exceptional among the specimens examined. Intercellular hyphae of the rust fungi predominately fluoresced a diffuse blue (Fig. 1H), whereas hyphae in other specimens treated following the standard procedure fluoresced yellow-green. Haustorial mother cells of rust fungi, however, fluoresced yellow-green like hyphae in other specimens (Fig. 11 and J). Without both KOH treatment and staining, intercellular rust hyphae and haustorial mother cells did not fluoresce, and standard staining without KOH treatment resulted in conventional fluorescence only of host-deposited callose around haustoria. As observed with *Thielaviopsis basicola* infection of *N. tabacum*, host-produced callose deposits were not observed around rust penetration structures after KOH-aniline blue treatment.

Root tissue colonization was observed with *H. ericae* on *Pieris floribunda* and *Fusarium* sp. on *Solanum melongena*. Hyphae of *H. ericae* colonized cells of *Pieris floribunda* hair roots (7) by penetration of the adjacent host cell through the contiguous cell walls (Fig. 1O). Glutaraldehyde-fixed and dehydrated specimens of *Fusarium* sp. on *Solanum melongena* fluoresced with equal quality to fresh specimens after treatment following the standard procedure. *Fusarium* sp. hyphae colonized host xylem elements, which also significantly fluoresced (Fig. 1P).

Fungal sporulation was observed with specimens of *E. lagerstroemiae* on *L. indica* and *Peronospora tabacina* on *N. tabacum*. Taxonomically important morphology of *E. lagerstroemiae* conidia and conidiophores was observed in detail, and septations within conidiophores could be distinguished easily (Fig. 1F). Ellipsoidid conidia were observed singly or in short chains on cylindrical conidiophores. Conidia of *E. lagerstroemiae* fluoresced white to blue-white compared to conidiophores and hyphae. Stages of *Peronospora tabacina* sporangiole development were observed with specimens collected from 4:00 to 6:00 a.m. The most mature of these specimens were characterized by dichotomously branching stalks that terminated in spherical sporangia (Fig. 1G).

Observation of airborne inoculum and investigation into limitations of stain solution composition were performed with ascospores of *Sclerotinia sclerotiorum*. KOH-aniline blue treatment of filters disks on which ascospores had been vacuum-collected allowed manipulation of ascospores prior to observation (Fig. 1K). Modifications to the staining solution did not appreciably alter the intensity of ascospore fluorescence from that achieved with the standard stain composition. Flue-cured tobacco seed was examined.
for the presence of fungal contamination. Hyphae and spores were observed on the seedcoat surface of the majority of seeds examined (Fig. 1L).

DISCUSSION

The KOH-aniline blue technique that was developed in this study provided simple and effective documentation of plant-fungal interactions in a broad range of applications. The technique enhanced observation of infection and colonization of host tissue, fungal reproduction, and detection of fungal inoculum. Excellent resolution and contrast of diverse fungal taxa were provided by the KOH-aniline blue technique compared to other fluorescent methods of staining hyphae in plant tissue ([15,20,23], Fungafase-F, and Fungi-Fluor). Although fluorescence of plant tissues was common, the color and intensity of fluorescent fluorescence permitted easy differentiation of fungi and host tissues. In fact, the ability to visualize the morphology of host tissue often aided the interpretation of fungal interactions with the host.

In addition to being highly effective in staining fungi, this technique offers many advantages. For example, the chemicals required for the standard procedure (KOH, K2HPO4, and aniline blue dye) are inexpensive and readily obtainable through commercial sources, and use of these chemicals as described is not associated with significant health risks or precautions. The rapidity (30 to 40 min) and plasticity of the technique are of particular benefit. Frequently, other protocols for fluorescent staining describe incubation in multiple reagents and require significantly longer time to complete than the KOH-aniline blue technique ([15,16,20,23] and Fungafase-F). The plasticity of the standard procedure was investigated with regard to common limitations of research. Long-term storage of specimens in KOH, completion of treatments without autoclaving or heating, and the use of variously preserved and agar-embedded specimens will accommodate many specific experimental needs. For example, the successful use of the KOH-aniline blue technique with extremely old herbarium specimens suggests a valuable means of investigating plant-fungal interactions for which fresh samples are not currently or locally available. Further augmentations or manipulation of the standard procedure may prove beneficial to applications not investigated in this study.

Observations of fungal morphology supported previous reports in some of the interactions observed in this study (1,3,7,8,12,22); however, with other specimens, the KOH-aniline blue technique afforded original observations on the nature of specific host-pathogen interactions. Examples of results supporting previous observations include xylem colonization by Fusarium sp. (1), hair root colonization by H. ericae (7), the morphology of penetrating hyphae of Thielaviopsis basicola (8), and sporulating structures of E. lagerstroemiae (3.22) and Peronospora tabacina (12). Previously unreported events of specific interactions included stomatal penetration of Silene alba by U. violacea, the nature of leaf-vein colonization by Peronospora tabacina, and differential staining of rust intercellular hyphae and haustorial mother cells. The results obtained with rust specimens warrant further investigation. It is likely that the differential staining of intercellular hyphae and haustorial mother cells indicates differences in cell wall composition. With rust specimens, as in other studies (15,21), aniline blue fluorescence may be employed to investigate fungal cell-wall architecture.

LITERATURE CITED

2. Bartholomew, E. 1910. Index to Fungi Columbiani, Centuries 1 to 30. Record Print, Stockton, KS.