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This letter was written to articulate a problem for nonepidemi-
ologists, to propose a possible solution, and to discuss applica-
tions of the solution, The function of this letter is to advocate for
simplicity in spatial data analysis, to describe a simple and effec-
tive alternative to more complex forms of analysis, and to encour-
age the study of epidemics as populations of disease foci, rather
than as populations of diseased individuals.

The problem. Much of quantitative epidemiology is not very
straightforward and appears to consist in obscuring the results of
simple investigations in sophisticated analyses. This type of criti-
cism certainly can be directed at the area of spatial pattern analysis.
Some forms of analysis are too complex for most to understand.
They fail to simplify data. The problem lies with the idea that if
something is relatively new and complex, then it must be better.

At a basic level, the objectives of spatial analysis of pres-
ence/absence data for epidemics are straightforward. Investigators
first try to detect departure from spatial randomness, and then
questions concerning aspects of pattern are asked (e.g., cluster or
focus size, shape, number, and orientation of axes within the lat-
tice). Some methods of pattern analysis lack the simplicity and
forthrightness of these objectives. The complexity of some tech-
niques (i.e., statistical theory, mathematics, and interpretation),
the obliqueness of the results, and the largely undeveloped links
to disease management applications are factors that render these
techniques difficult to use, understand, and apply to disease man-
agement. Inevitable consequences are the confusion of the casual
reader or nonepidemiologists and the relative inaccessibility of
techniques to those outside a small circle of epidemiologists.

A trend in botanical epidemiology is the increasing sophistica-
tion and complexity of spatial data analysis technologies. During
the past decade, a group of relatively sophisticated spa-
tial/spatiotemporal analysis methods has emerged. Among the
methods are spatiotemporal autocorrelation (14) and geostatistics
(3,15). These methods are based upon relatively advanced statis-
tical theory as compared with simpler forms of analysis
(mapping, quadrat variance methods, discrete probability distri-
butions, and indices of dispersion) (2). This inherent complexity and
sophistication renders these methods intimidating and/or inac-
cessible to many researchers who wish to conduct epidemiologi-
cal analysis of their data. In addition to an increase in theoretical
complexity, technical jargon also has proliferated, as with two-
dimensional and spatiotemporal distance class analyses (5,10,13).
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Understanding and interpreting these analyses and keeping up-to-
date with their glossaries have become more challenging.

One objective of data analysis is to reduce the complexity of data
and organize data into a clear and meaningful system. Some forms
of spatial pattern analysis fail to accomplish this, and may even
amplify the complexity of data. Two-dimensional distance class
analysis (2DCLASS) is a case in point. For example, a distance
class matrix is often as spatially complex as its mapped data. And,
with its relative lack of statistical rigor, a proliferating jargon, and
several arbitrary decision guidelines, it is not an extremely precise
method for hypothesis testing. Aspects of distance class matrices
(e.g., core and reflected clusters) are used as indirect evidence for
quantitative aspects of actual disease foci (e.g., cluster number, size,
shape, and orientation) (11). This evidence is indirect and oblique
because the matrix is only an image of the mapped data super-
imposed upon random scenarios, and not the actual mapped data.
Although the method has merit, the interpretive nature of the deci-
sion criteria and the roundabout way of arriving at cluster attributes
invite misuse and tenuous and potentially inaccurate conclusions.

In this communication, I offer a simple alternative to more
complex methods of spatial pattern analysis. The method con-
cerns the direct description and summary of disease foci, which,
thereby, reduces the complexity of mapped data. The method is
an extension of mapping. Its simplicity and utility are demon-
strated in applications to disease data, and computer software for
the analysis is made available. Before the method is described, a
few related concepts are reviewed and clarified.

Definitions and assumptions. A disease “focus” is “a site of
localized concentration of diseased plants or discrete lesions,
either about a primary source of infection or coinciding with an
area originally favorable to establishment, and tending to influ-
ence the pattern of further transmission of the disease” (1). Simi-
larly, a disease “cluster” may be defined as a number of diseased
plants grouped closely together. Thus, the two terms are synony-
mous when used in relation to plant disease epidemics. However,
an important distinction is made herein between these two terms:
a disease focus may consist of one diseased plant or unit, whereas
a disease cluster contains more than one diseased plant or unit.

A concept of spatial proximity is borrowed here from the game of
chess and from spatial lag correlation analysis of continuous data
(4,9). The concept may be applied to defining a disease focus for
binary data. The concept establishes a spatial proximity-distance
criterion for diseased plants within a disease focus or cluster (an
immediate proximity criterion). A diseased plant that is adjacent to
another diseased plant (spatial lag = 1) and shares an edge (rook’s
case) or a corner (bishop’s case) with that diseased plant in a lattice
are considered to be part of the same disease focus (Fig. 1A).



Within this concept, related variables may be defined and their
values calculated to enhance the understanding of spatial dynamics.
Focus “number” (N) is defined as the total number of disease foci in
the matrix. Focus “size” (s) is defined as the number of diseased
plants in a disease focus (each plant meeting the immediate prox-
imity criterion). A spatially isolated, diseased plant has s = 1. Focus
“dimensions” are defined as the maximum “row” (r) and “column”
(c) distances spanned by a focus. A “proximity index” (PI) may be
used as an indication of compactness of focus organization. The
index, calculated as (s/rc), is borrowed here from spatiotemporal
distance class analysis, in which values for PI were used to charac-
terize the compactness of the core cluster (10). A high frequency of
rook’s case spatial connections results in a relatively high PI in
relation to a high frequency of bishop’s connections among plants.
Thus, PI varies inversely with compactness. Examples are provided
to illustrate the calculation of N, s, r, ¢, and PI (Fig. 1B).

Two assumptions underlie this simple model. First, it is assumed
that binary data (presence/absence) are relevant simplifications of
the system. Distances between rows and between plants within rows
are assumed to be constant, although not necessarily equal.

A computer program with a recursive subroutine was written to
find and describe disease foci in two-dimensional space. The pro-
gram (FOCI) prints a map of the observed data, identifies the num-
ber of disease foci, and calculates s, r, ¢, and PI for each focus. Pro-
gramming language is Microsoft Visual Basic for Windows. Input
data sets are as described previously (13). Data from two patho-
systems are presented to illustrate the use and application of the
method.

Example 1: Citrus variegated chlorosis (CVC). Data were fur-
nished by R. D. Berger, University of Florida, Department of Plant
Pathology. The data were from an epidemic of CVC from 1989 to
1992 in a Brazilian citrus (Citrus sinensis (L.) Osbeck) orchard.
Trees were cultivar Natal sweet orange on Cleopatra mandarin
(Citrus reshni Hort. ex Tan.) rootstocks. Between-row spacing was
8 m, and within-row spacing of trees was 6 m. A sub set of the
orchard (71 rows, 21 trees per row) was selected for analysis.

Yearly maps of CVC incidence show the accumulation of dis-
case in the orchard from 1989 to 1992 (Fig. 2). The number of
CVC disease foci increased linearly from 1989 to 1991 to ap-
proximately 80 foci, and then decreased from 1991 to 1992 by
66% as coalescence among CVC disease foci occurred (Fig. 3A).
The reduction in focus number (coalescence) occurred when dis-
ease incidence increased from 22 to 46% (Fig. 3A). Values for
mean PI also increased linearly (1989 to 1991) and then declined
(0.75 to 0.65, 1991 to 1992, respectively) (Fig. 3B). Thus, as the
number of disease foci increased (1989 to 1991), so did the relative
compactness of focus organization. Conversely, as distinct foci
coalesced into a larger disease focus, the organization of the
resulting focus was less compact than that of the original, coa-
lescing foci. Values for s remained relatively constant from 1989 to
1990, but increased significantly thereafter (1991 to 1992) during
the period of presumed coalescence (Fig. 3B). A typical CVC
disease focus was isodiametric from 1989 to 1992, as evident in the
nearly identical values representing row and column dimensions for
foci (Fig. 3C). A frequency distribution for s indicated that from
1989 to 1991 the most commonly observed disease focus size was 1
(Fig. 3D). No focus with s > 4 was observed for 1989 or 1990. In
1991 and 1992, the frequency of smaller foci decreased as larger
foci formed because of coalescence of proximal disease foci.

Example 2: Zucchini yellow mosaic potyvirus (ZYMYV).
Data were available from experimental epidemics of ZYMV on
zucchini squash (Cucurbita pepo L.) in 20-row by 20-column
lattices on the island of Maui, Hawaii, in 1994 . Plant spacing was
I m and row spacing was 1.3 m. These data were analyzed by
spatiotemporal distance class analysis elsewhere (12).

Researchers wished to compare ZYMYV epidemics with differ-
ent spatial starting conditions. They started different epidemics
(via inoculation) with the same number of inoculations (12

plants). Varying the configurations of inoculated plants resulted in
the establishment of different numbers of disease foci between
treatments. After inoculation, ZYMV was allowed to spread natu-
rally. Data from two treatments were selected here, a uniform
pattern (UP) and an aggregated pattern (AP) of initial disease
(Fig. 4A and B, with 12 and 2 foci, respectively). Maps of disease
incidence from seven disease assessment dates were prepared to
illustrate the general spatiotemporal progress of ZYMYV infection
in each plot (Fig. 4A and B).

The progress curves for ZYMV-incidence were ‘S’-shaped for
the UP and the AP data (Fig. 5A). Higher levels for disease inci-
dence were observed for UP at most dates than for AP (Fig. 5A).
Values for final disease incidence for AP and UP were 0.73 and
0.91, respectively (Fig. 5A). Rate of disease progress was reduced
for AP as compared with UP, indicating the effect that aggrega-
tion can have upon temporal aspects of epidemics.

The total number of disease foci increased at approximately the
same rate for both AP and UP for the first several assessment
dates, but peaked at different times and at different levels (Fig.
5B). In general, a peak in a curve of N versus time indicates the
point in time at which coalescence of foci (extinction of old foci)
occurs more frequently than either the creation of new foci or the
simple, radial expansion of existing foci. The peak for AP was
delayed in relation to UP (Fig. 5B).

During the last 7 to 9 days of the ZYMV experiment, large dif-
ferences in average focus size were observed between AP and UP
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Fig. 1. A, The immediate proximity criterion, defined in relation to the reference
plant (discased) for the rook’s and bishop’s case (spatial lag = 1) among
diseased plants in a plant distribution lattice. This criterion is the basis for
defining disease foci: foci consist of diseased plants that meet this criterion for
two-dimensional adjacency. B, Map of diseased (B) and nondiseased ((]) plants
in a nine-row by nine-column lattice. The two disease foci (1 and 2, respec-
tively) differ in focus size and proximity index. For focus 1, focus size (s) = 9;
maximum row length () = 3, maximum column width (¢) = 4, and proximity
index (PI) = (s/rc) = 0.75. For focus 2, s = 14, r=4, ¢ = 8, and P/ = 0.44,
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In light of these data, we know that epidemics with different
starting conditions can have quite different spatial and temporal
attributes. But we can’t say why, exactly. To what extent was the
initial number of disease foci responsible for subsequent differ-
ences (AP versus UP) for focus attributes? How is disease inci-
dence related to disease focus attributes? The ZYMV experiment
was not designed to answer these questions. Only a carefully de-
signed experiment could, and would, reveal that aspects of dis-
ease increase in space and time are interrelated.

Discussion. Data generated by this method may be analyzed by
well-known statistical methods (e.g., analysis of variance and
means separation). Confidence limits on mean values of s, r, ¢,

treatments (Fig. 5C). Prior to that, average size of disease foci
remained low and constant for the first four assessment dates
(Fig. 5C). However, the rapid increase of ZYMYV in the UP plot
resulted in a single, large disease focus by 39 days after
inoculation. The focus spanned the entire row- and column-
length of the plot (Figs. 4A and 5D). In general, disease foci
were more numerous and larger for the UP data than for the AP
treatment.

Cluster shape for the UP plot was, on average, isodiametric
during the epidemic. For AP, cluster shape was roughly rectangu-
lar between 28 and 39 days after inoculation, on average, with
long axis in directions of rows (Fig. 5D).

1989

1990

1991

1992

DO00OmO00O0OODOOEODDOODO
poDDoODOEmOODODOMDO0OOO0
ooppDooOoDDOODOODEOOO0
opooopooDOODODODODOOOO
oppooooooOoDoODODDOOOO
ooooooepoOO0ODOODOOOOO
poopoopopoooDoOoOOOOOO
poopooopoooooOoDoooOoOOO
pooooopoOoDOOODODOOOO
poopooopoOoooDoDODOOOO
ooooooppoOooooDOooOoDOoooo
OoomO0DOOOOOOOODOOOO
gooompopDOOODDOOOOOODO
oooooooooOODODODOOOM
ooopopopoooDoODOoOoODO
goosO0oODooOOODOOODOOOOD
gooooooooooooDoooOOOD
oooopoooooooooOoooO0OO0
ooos0O00DODOODOODOOOODO
oooopoooOoooooOoODO0ODO0
ooopomo0OmOO0DOODOODO
OooopooooopoDDOOOODDO
bdoopoooooOoO0ooODDOO0O0
goopooooooopooooonooon
gooopoopoOoDOooOooonoOe
ooooooooooOooooOooOoOoOo
oo0oooooo0ODoODDOODOOO0
OoooooooOoooooDoOOOOm
DopoopoDoOpoDODDODODDODO
goopooooooDooooooooDn
oppopooooOOODDODDDOOO
gooopoopoooDoOoOOoOODO
goooooopoopooooooOmO
gooosO0pDOODDOODOOOOOOD
opoooooooOoDooDDODOOD
0ooooOoOoDoOOOOODOOOOOOn
oooooopoOooooOoDOOOoOOoO
DoooooooOODOODOOOOO0
ooooooooOoooDODOOOOOO
ooooooooomO0OODOOOOOO
nooooooooompODOOOOOOO
goooooopooopooDoooDo
gooooooopomnOopOODOOO
ooooos0O0O0DDDODOOOOGO
ooooooopooopDOoDOOOOOD
gooooooopDooooODODOOnO
goooooooooooopnoonoOO
oonooooooDO0DDOmMOOOOO0
oooooooooOoDOmODOOOO0
ooooos0O0O0O0DOOODOODOOD
DopooooooOopDoDODDOOOOD
oopoDooooOOoDOOODOOOOOO
ooooooO0oODDODODOOOOOO
ooooopoooDOODOOmMODOOO
goopopooooopDooOOOOOOO
ooopoooooooopoooooonn
oopopoopooooooooOoonO
OopooooooOopoooDOOOOn
DOosOO0DDOOODOODOOOOO
goooopooO0DOOOOOOODOO
onooopoooopoOOOOoOOOOOO
goopopooooopooooooOonoD
goooopooooopooooOmQO
goooooooooopDooOOOOOn
oopopoooDooooDODOoOOO
poopooooooooooooDOoODO
goooooooooooooODoODOO
pooooopooooDopODOoooOOo
oooooopoOooopDooOoDOooOoOn
poooooo0OoODODODOOOOOO0
poppoopoooopDOoODODOOOD

Oo0DERO000OEOOENODODOOOD
oopoooDOeEEO000OmEEOORD
oDDOoOmO0OOOODOODODOWNOONO
oo0ooOooDOOOmORNDOOODOO
ooooooooOmOODOOOODOO
ooopoomOmOODOOOOOOOQ
poooooooooopoOoOOOOmO
Doo0O0oOOoOOOODDODOOOOO
oopbooppooooDoOODOODDO
ooooDooDoooOODOCOWOOODN
pooooo0Oo0OOODOmOOODO
00DDOmO0ODOOEOOODDODOOOOO
pooDmDOROODOODDO®OOO
poopooooOoOoDODOOOOODONM
ooooooooooOoOOOOODODOO
ooomO0O0DODOOOODOOODDOO
oooopoopoooopoooOOoOnO
pooooooOoooopoDOoOoODOODO
DoomOO0DOOOODODODOCOOOM
oooooOopDoDoDDOODDOODO
oDoOmeD0ORODOORODOOOO
ooo0OmOoDOOODOROODOOOO
0o0oo00O00O0OODDODOOOO
ooopoooOoOOoDODOOODODOO
oooooooooOoDooOOOOODOm
oooDOOEOO0O0O0DOOOODOO
ooopooooOOEEOOOOOOOO
ooopooOoeOO0OODOODOOD®
ooopoooooooDOOODOmOO
s0R00000000D0DOOOOODD
oooooo0O0O0DODOODOOOO
poooooo0OO0OROOOODOOON
0000000 COERO00ODODOmONO
Om0DEO000DOODOOOOOOO
poopooopoDoDooOOoODOOO
Om0D0O0OODOOOODOODOOOO
00000000000 DOODOOmD
s000E0RDO0ORNOOODOODO
0pooo00OOOOOOROODOOOO
ODOoooDOmOOEOOODDODOOOO
0DDoO0oO0OOOOmOODDDOOODO
gooopoOm0DODONOODOOODO
oooooooooOOmOODOOODOOO
ooooom0ODODOODOOOODOO
0ooooo0OooOOoOOODOOOODOOOO
ooooomO00OO0ODODOOODODO
poooooopooopDoOoODOODO
ooooooOo0D0DODDOWMODOOOO
gpooooooDoDOmOODOOODO
oooome0OO00O0DOOOODOOOO
oooooDooO0O0oOODODODOO
ooooopoooooOoOooDOOODODOOO
oom0pDOOOOOOOODOOODOOO
pooopooooOoDpOoOmEOOOO
oonoobooopooopooOooOooDOO
poooooopoooDooOoooOODO
ooooooo0oDODOOOOODOODO
oopoooO0DoDODOODODOOOOO
Oom0000OODOOOOD®EDOOOO
oboDopopDooOoOOOODDODOOOOO
oooopooooOoOOODOODOOO
goooooDOODODODOOOODOO
ooooooooooDooOoOOOmOO
ooooooOoooO0OOoODOODOOOO
ooopoooopDopDOOOOOOOO
ooooooo0D0DODDOODOOODDO
goodooO0DO0O0DOODOOOODO
0o0DO0ODODOOOOOODDOODO
DoDooooOoOOOOOODDDOODOO
gooooooomO0O0O0ODDDOOOOO
oopooOoooDoOoOooOOODODOO

OOeEEEOEEOOREROOOOCOOO
poos000OEEEE00EEEOONO
BO0ONENEEEES00ONEENEND
EO00ER0O0ONRORENOODOOND
DOEOOOOOORONOOOOOOEE
E00ONONNONONROO00NOND
100R000000RCENROOOND
0Doo0oO0OmONCOREEOO0OO®O
goooopDooDeOOOOOEOODO
0DooooOoDooDOOODOmODOOON
OOs0DOEDOOODOONOOODDO
DoOOmOEROEROOODOODDOO
OE00eERRO000OEERONDO0
Oss00OERO0OOCONOOOROOON
0ooo0000ODOOOOmOOOEOO
Oo0OmO0OEOONDOROOEROON
0oooROOD0ODOOOOOOOOOD
Os0s000OR0DO0COROROODOON
ODOs00OOROOOODOOOOOWEN
ODosORODOOEOOODOOOOOO
ODo0OEE0OEEOERORO0ONNO
ER0ER00000COEOORODOO
Om000000COOOODORDDEO
DoOomO0O0OOOROOOOODODOO
OR00OmOREO00O0OROOCORON
Om0000R0D00OENODODEE
OD000OsO0O0OEEERODD0O0OOO0
Os0E000OEORROOCOOOOONE
OesROR0ODOOODOODDORODODO
S0E00ECERONONONRNODD
Oopooo00DOODO0DO0OORMEEO
ooooDo0o0OEOEOO0D0ODODON
OR00D000OOEEOOO0OOOEEED
EEROR000EEOERO0DONE N
OO0Dse0Os00O0DODOOOEEON
EE0e000ERORODOO0ONEED
ER00E0EO0RDOROOROCEE
ER0EE0R000mN a0R00O0
ooooooo0oooDoOOmOROEOmO
ERN0EREROROODOODOOOOO
ORO0000OOOmORMOOOOOOODOO
gooooDomOoDODOEDONODOO
R000000DWDOEO00OODOO0OD
ooooOsDODOEODOOODOODOOO
DooOomOO0OOROOOOO®OOOO
opooOoepOo0OD0OOOOODOOOO
Om0000DDODODOOODOODD
gooooODOOOOEODOROOOODDO
ooooboDooDoDOOmOODOODG
ooposeDDOOODOOOOOODD
ooooooooDoDOODODODOOO
gooooopopoOocoOOOOODOO
Omsd0000DOOODOODODOO
E00R0000000COmMEROOOE
DoooooDooooODODOmOOOOO
ooooooopoooOooOoDOODO
R000000000000OeO0ENEN
oooooomODODOOOOODOODD
OOeR000000O®DOOEOOODD
ooom000DDOOODOOOONODO
ooooooopDoDooOoOO0OOOoDO
gooooopoooOoOOOODOODOOO
oooooOoDoDOOEOREODEEO
ooopooooooDoODODOODOOO
oooooooDooOoDOOODODODODD
No00D000OWOORmOOODOOOOO
m00000D0DD000OmOOOOOOO0
EER0000OROOOOODOOOOOO
ooooobooOo0OOO0ODOOODOODDO
pooooooOmRODDOOOOOmOO
Dem0R00000DOOOOOOOOO

OOwEREONEEOREBOOOOOOO
OOsEsmEOBRER
OOmmnm
ERODDOOmO
goopoomm
OssEsOOEOED
OssEEEOCNEE
EOEERRDOD

E00EEENERDEOENR
s0e00080000ROOROOO
E00E0EROENOONOBOOO
Ommnm EECENEEECEEER
a0 OoEs0O0OREOORROOE
ONEN000ONO0OROEEONEE0D0
(=) Rey § Rej) Raja) Ju) § | EROON
OR00RO0000O0ONREOONOO
Oe0E000ROBNRORROCOON
O0Oee000ROOO0OEOOOCONEE
ooOE0OEEEDOEONOCEEEER
"0E0 EREEOEONOEER
EEEREREOOOOOEODOEOORO
OR000DOOORMOMOOEEONRO
s00R00000OROONOOOOOOO
Os0ONREEEONREEOOE ]
Omm0o oooommn
OOENEEEUONNENEEOEEOE
OE0OE00OREORROOORDDONE
EEEROROCOONDONOOONEO
E0R00NOEROBNONONEEOOD0
B0m0O0 ooomDO00OmERO
s0ooo0 LI R Julel Rule] § |
EER00OR0OREE00ONNOONNED
ERE0ROO0ONNREEERODEES
s0EER0ROODOOCOONE
EEOE000EEOR0000CERED
ER00R0R0ORO0ROOBOORN
EElEE0R00ONEEEREORCOED
OoooOooOmOOOOEOEOEOESE
EERDENEROROOROOOOOOO

omD ERR0DO0OEOOO
a00m OEEEEEOOND
mOOO0Om E0e0000CmOmO

E000sEEsORR00000NO0O0
gooDoeDOEOROOOOONOOO
oooDOemOOO0OEODOOODOO
BR00ON00OR0000D0D0NEMNOE
ooooOos0o0O00OmOOROOOOOO
00000000 EEEOROROO
s000eEEOmOONOORROOOO
oooopoooooooOoODOOOmO
(o) RsleRuliuiuiuiulufela)alol Qafuls} | |
ERNENOOROONOORNONERD
LJuan) Nujuie} § Jolejajel § § Jof fuf |
ER0R0OEROOROOOONROROO
ER00eE0R0ORROROORONO0
ERERROO0ORO0ONENDNEEEE
DopoDOEEEEOOROEONEEEO
EEERONOOOONDOONROOO0
O0ORO000OOEOEDEEEROOO
E000000D0OEEROO0OODOOO
ER0B0000000OND000NEED
DooooOERO0EEEEEEEEED
pooppoooos0OOoOOEOO0mE
DoopoOwDOROOCOOEEEEE
L Jukn) Julin) B Asiul Bolu) ofo] § Jifs]
000000000 EOONOENEN
LR R A0R Rulsh §  Rsfe) Jol Jofeju] ol
oooooOoOmOOODOODOOW®OO
DoooooOOWEOOEOOOO®OO
Oes0e0000OROO00OCEEORO

Fig. 2. Yearly maps (1989 to 1992, respectively) of discased (M) and nondiseased (CJ) citrus trees during an epidemic of citrus variegated chlorosis in a 71-row
by 20-column section of a Brazilian citrus orchard. Maps show the accumulation of disease from year to year in the same orchard.
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and PI could be calculated. Measures of variance and central ten-
dency have the potential to provide important insights into epi-
demic dynamics. For example, a measure of variation in s, r, ¢,
and PI might be helpful in describing the spatial pattern of a dis-
ease. Under some conditions, very different epidemics might have
similar measures of central tendency (i.e., mean values of s and
PI). Thus, some measure of variance about these means might be
helpful in distinguishing such epidemics. The potential importance
of variation in mean s is illustrated by the histogram in Figure 3D.
The method also generates temporal data that can be fit to nonlinear
models (e.g., logistic) that describe system behavior over time.
Parameters from these nonlinear models may even prove useful in
predicting the spatiotemporal dynamics of disease spread.

There are very few techniques currently available that provide
useful information about disease foci for intensively mapped,
binary data (focus size, shape, number, etc.). The simple method
described here fills a need in this area and provides an improved
alternative for describing clusters. The method may be used as a
direct supplement to 2DCLASS. 2DCLASS and spatial auto-
correlation analysis both provide limited information about focus
size, shape, number, etc. The output matrices and proximity pat-
terns produced by these analyses are reflections of the actual data
and may even be more complex than the original data. Although
distance class analysis is useful in detecting departures from spa-
tial randomness and edge effects, its estimates of cluster number
and size are imprecise and of unproven reliability, since informa-

A
90 0.6
] -@- Incidence
..8.. 80 -6 Foci 9 {05 o
3 o Lt (]
® 70 [ 5
] {04 B
& 60 £
S 103 3
S 5o} 3
102 ©
8 40 )
E 5
3 30 N 0.1
20 Il 1 L 0
1989 1990 1991 1992
B C
=50 0.74 —34‘5
é @ :T:U:isimﬁ 1 _,.-"-. 0.72 E 4|
@40 - [© A Pl 07 ¥ 8
D ¥ (7]
3 e g 5%
g 30} ' ‘@60* 0.68 ;.:. fs) 3
0 {066 £ g
s 25
S a0 | o s
@ 0.64 = B
..a 5 [ 2 "
c 062 & =2
©10 = 51 5
o .o
= 0.6 £
0 : 058 1 : : :
1989 1990 1991 1992 1989 1990 1991 1992
Year Year
D
Frequenc:

8

9
Size of CVC disease focl

10 1

Fig. 3. Disease foci data from an epidemic of citrus variegated chlorosis
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tion is gathered from the distance class matrix and not the direct analysis of disease foci (Table 1). The misestimation of s
mapped data directly. occurred because the core cluster area of the distance class matrix

By using the simple approach described here in conjunction was only a reflection of average spatial relationships among dis-
with distance class analysis, improved estimates (accuracy and eased plants in comparison with a random scenario. Conversely,
precision) of disease focus attributes may be obtained. For ex- direct analysis of foci is done from mapped data and no compari-
ample, the CVC data and ZYMV data were analyzed by son with random scenarios is done. Misestimation of N occurred
2DCLASS and the simple method, and quite different estimates because of a basic difference in the way N is calculated by the
were obtained (Table 1). Of interest is the underestimation of s by two analyses. In distance class analysis, N is estimated by count-
2DCLASS for the UP treatment in the ZYMV data in relation to ing the number of discrete groups of distance classes within the
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Fig. 4. Two spatiotemporal maps of diseased and nondiseased zucchini plants during epidemics of zucchini yellow mosaic virus (ZYMV) during 1994 in Maui,
Hawaii. At day 0, 12 seedlings were inoculated (x) in each of two lattices (each 20-rows by 20-columns). A, Uniform patterns of inoculated plants. B, Aggre-
gated patterns of inoculated plants. Disease spread occurred naturally by aphids after inoculation.
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distance class matrix. These groups of distance classes represent
spatial relationships among diseased plants within the lattice (in
comparison with random scenarios) and expose patterns of ag-
gregation. The same rules for proximity used to identify foci in
this paper are used in distance class analysis to identify discrete
groups of distance classes in the distance class matrix (the re-
flected clusters). However, single, significant distance classes that
are spatially isolated are not counted in the estimation of N. In the
simple model described here, single and spatially isolated dis-
eased plants are considered disease foci and are counted in the
estimate of N.

Links with other forms and systems of analysis are possible.
Data on focus attributes or additional parameters generated by
using the data in other models have potential to be utilized by
crop loss models (7) or disease forecasting systems. The method
described here may be used in any physical or biological system
for which binary data (presence/absence) data are relevant. The
method is distinguished from forms of analysis of sparsely sam-
pled or continuous data. The strength of the method is in the
comparison of epidemics.

There are potential limitations to this method of analysis. It is
well established from experimental data that aggregation varies
with disease mean and, therefore, usually with time (8,16). Thus,
parameters of spatial and temporal models that are used to un-
derstand a pathosystem also vary with disease mean and are
density dependent.

There exists a degree of density dependence for the elements of
the model described here (e.g., N, s, r, ¢, and PI). In other words,
a variable (N) can assume a range of values depending on the
level of disease incidence in the population. An example of the
mathematical basis for dependency in this system is as follows.

Within a given rectangular lattice, there is space for a finite
number of disease foci (Np.,). This maximum number of foci is
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realized when foci are minimum size (s = 1) and distributed uni-
formly within the lattice (and have no rook’s- or bishop’s-case
position occupied by another diseased plant). N, may be ex-
pressed as a function of focus dimensions (row and column
length): N,.x = (r¢/4); in which r=r+ 1 orc=c¢ + 1, when ror ¢
are odd numbers, respectively. Thus, for the CVC data (71 rows,
20 columns), Ny, = [(72)(20)/4] = 360, the maximum number of
disease foci possible for this lattice. When s = 1, N is a measure
of disease incidence (DI). DI at N, can then be expressed as
follows: DI = (N, /rc). Using this equation, CVC DI at theoreti-
cal Ny (i.€., 360 foci) was 0.253. Actually, CVC DI at observed
Ny (i-e., 79 foci) was 0.22 (Fig. 3A). For lattices with an even
number of rows and columns, DI at N,,,, = 0.25. This is the level
of disease incidence at theoretical N, in the lattice. It follows
that as DI approaches 0.25 it becomes possible to observe the
maximum number of foci during an epidemic. Thus, values for N
are density dependent. When DI is very low or high, values for N
are expected to be low. This means that comparisons of N among
lattices of different sizes or levels of disease incidence should
proceed with caution and may be relatively meaningless.

Focus size also is density dependent. Because plants remain
diseased in this model, a disease focus cannot shrink, it can only
get larger or remain the same size. Thus, as disease spreads
(incidence increases), foci tend to enlarge. Also, space within a
matrix is limited. As DI approaches its maximum, coalescence
among foci occurs (larger s values).

Values for PI vary with 5. (Remember that s is the number of
diseased plants, not a measure of focus dimension. Focus dimen-
sions, r and ¢ values, assume a range that is dependent upon s.)
For example, as s increases, the minimum value possible for PI
(i.e., Pl;,) decreases: Pl,;, = (s/s%). As the minimum value for P/
decreases, the range and number of values possible for PI in-
creases. As s increases, the range in possible focus shapes and
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Fig. 5. Comparative disease foci data versus time from seven disease assessment dates during two epidemics of zucchini yellow mosaic virus (ZYMV) on zuc-
chini squash in 1994 in Maui, Hawaii, in 20-row by 20-column lattices. Data are from epidemics with two different spatial starting conditions, a uniform pattern
(UP) of 12 ZYMV-infected plants and an aggregated pattern (AP) of 12 ZYM V-infected plants. A, Proportion of ZYM V-infected plants. B, Total number of
ZYMV disease foci. C, Mean size of ZYMYV disease foci. D, Maximum row and column length of ZYMV disease foci.
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dimensions increases. These concepts are illustrated as follows.
First, with s = 1, PI = 1. There is only one possible PI value when
s = 1. With s = 2, PI can assume two values (1.0 and 0.5), de-
pending on whether the connection between the two diseased
plants is rook’s or bishop’s case, respectively. With s = 3, PI can
assume the following values: 1.00, 0.75, 0.50, and 0.33. Thus,
mean PJ values, which are based upon data from many small foci
(s = 1), are relatively inflated. Larger foci will tend to have
smaller values for PI, on average. If PI is dependent upon s, and s
is dependent upon density (D), then PI is density dependent also.

TABLE 1. Comparison of disease foci attributes from two forms of spatial
analysis (two-dimensional distance class analysis [2DCLASS] and an analy-
sis of disease foci [FOCI]) for epidemics of citrus variegated chlorosis (CVC)
in Brazil during 1989 to 1992 and zucchini yellow mosaic virus (ZYMV) on
zucchini squash in Hawaii in 1994

Disease focus attribute 2DCLASS FOCI
CVC (year):
Cluster size Core cluster size® Mean focus size®
1989 2 1.1
1990 3 2.2
1991 47 4.6
1992 5 20.3
Cluster number Reflected clusters® Number of foci?
1989 24 23
1990 17 56
1991 14 79
1992 13 27
Core cluster Mean
Cluster compactness proximity index® proximity index’
1989 0.5 0.6
1990 0.75 0.68
1991 0.52 0.72
1992 0.63 0.65

ZYMYV (days after inoculation):

Core cluster size Mean focus size

Cluster size APt uUph AP UpP
23 11 3 33 22
25 19 4 4.5 37
29 30 5 6.1 11
32 38 5 12.0 76.7
36 29 3 427 344.0
39 25 2 73.0 362

Reflected clusters Number of foci

Cluster number AP up AP upP
23 3 8 12 23
25 2 4 11 23
29 1 6 16 14
32 1 3 12 3
36 | 5 6 1
39 1 5 4 1

* Core cluster size defined as the number of significant (P < 0.05) and adja-
cent distance classes in the [0,0] region of the 2DCLASS matrix.

" Mean focus size is defined as the average number of diseased plants in a
disease focus.

¢ A reflected cluster is defined as any group (>1) of significant (P < 0.05) and
adjacent distance classes in the 2DCLASS matrix, excluding the [0,0] re-
gion of the matrix.

4 A disease focus is a discrete group of spatially isolated diseased plants (1
diseased plant).

¢ Proximity index is a measure of the compactness of cluster organization.
For the core cluster, the index is calculated as the core cluster size/[X,Y]
dimensions of the core cluster.

T Proximity index is a measure of the compactness of cluster organization. In
FOCI, the index is calculated as focus size/(row - column dimensions of the
disease focus).

¢ AP = aggregated pattern of 12 initially diseased plants.

" UP = uniform pattern of 12 initially diseased plants.
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Density dependence of variables within this model does not
preclude its use, just as other density-dependent forms of spatial
analysis are not precluded from use. Unfortunately, it may not be
possible to assess the significance of some values because it may
not be possible to determine whether the temporal changes in
attributes of foci were because of i) changes in the spatial pattern
of the disease or ii) changes in the incidence of disease. However,
useful comparisons of epidemics are made possible by comparing
levels of one variable at a constant level of another variable (e.g.,
s at 25% DI).

For illustration, let us compare values for mean s for the
ZYMV data at a fixed DI level (0.70). From Figure 5A, it is evi-
dent that 0.70 DI occurred at 34 days after inoculation for the UP
treatment and at 39 days after inoculation for the AP treatment.
From Figure 5C, a comparison of s at 0.70 DI is possible by
comparing the values for s at 34 days after inoculation (s = ap-
proximately 200, UP treatment) and at 39 days after inoculation
(s = approximately 55, AP treatment). This approximately four-
fold difference in values for s between treatments indicates that s,
and each other variable from this analysis, is not strictly density-
dependent and can assume a relatively wide range of values.

In addition, with careful attention to experimental design, it
may be possible to distinguish between effects due to pattern and
effects due to disease incidence, or density.

Finally, variables and parameters derived from this method are
interrelated and should be interpreted as such. The mapped data
should always be revisited after performing an analysis to ensure
that strange or bizarre foci do not allow statistics to obscure the
truth.

Among its positive aspects, the method described here is quite
simple, conceptually and in application and interpretation, and
helps to alleviate the lack of simple techniques available to the
nonepidemiologist. A computer is not needed. Calculations are
made directly from mapped data. The method reduces complexity
of mapped data by transforming many maps into single, curvilin-
ear relationships between variables (e.g., s versus time). The
method allows relatively precise quantification of important at-
tributes of clustering: focus size, shape, orientation, compactness,
and the variances associated with these attributes. In addition, the
method permits us to look at epidemics from the standpoint of a
population of disease foci rather than a population of individually
diseased plants, a concept that finds support within the ecological
literature (6).

Computer software capable of performing the analysis is avail-
able from the author upon request.
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