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The existence of epidemiological data presupposes some form
of sampling. Guidelines for sampling procedures taken from the
entomological literature (e.g., 13,24) have often been put to use
by plant pathologists. Such sources make it clear that different
procedures are appropriate in different circumstances. In this let-
ter, we discuss the problem of sampling for disease incidence data
(collected on the basis of scoring plants, or plant units, as either
‘healthy’ or ‘diseased’), when the objective is to estimate mean
disease incidence (the proportion of plants, or plant units, dis-
eased) with a prespecified degree of reliability. We show that some
well-known methods based on unrestricted random sampling may
not be appropriate without modification. An important aspect of
this problem is the spatial pattern of diseased plants. Methods of
characterizing pattern that can be incorporated into formulae for
sample size determination are discussed.

Unrestricted random sampling. Consider, first, data that com-
prise ‘counts.’” Campbell and Madden (1) give a (hypothetical) ex-
ample in their Table 11.2, where the 36 observations are referred
to as ‘counts per quadrat’ (the quadrat is the sampling unit). For
data of this type, the lower limit is, obviously, 0 counts per quad-
rat, but there is no theoretical upper limit to the number of counts.
Phytopathological data such as ‘number of lesions per leaf’ or
entomological data such as ‘number of larvae per plant’ are ex-
amples of counts. Such data may be obtained from an unrestricted
random sample, in which every sampling unit (quadrat, leaf, or
plant) in the population being studied had an equal chance of
being assessed. For the data in Campbell and Madden’s (1) Table
11.2, the estimated mean and variance of the sample are, re-
spectively, 4.5 and 10.66.

The fact that the variance of this sample exceeds the mean is
informative. Random counts are often described by a Poisson dis-
tribution, for which the variance is equal to the mean. Since, in
this case, the observed variance is larger than the mean, a Poisson
distribution is unlikely to provide a good description of the ob-
served frequency distribution of counts per quadrat, and aggrega-
tion (spatial heterogeneity) is indicated. Thus, for count data, there
is information about aggregation in an unrestricted random sample.
To quantify this information, one could, for example, fit a dis-
crete, two-parameter statistical probability distribution (such as the
negative binomial distribution) to the data. Campbell and Madden
(1) show that the negative binomial distribution with k = 2.72 is a
better fit to their data than the Poisson distribution with the same
mean. Indeed, this was the reason for the example in the text-
book. If several such data sets were available, covering a range of
mean values, an alternative to quantifying information about ag-
gregation by fitting a separate negative binomial distribution to
each data set would be, instead, to characterize the coefficients of
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Taylor’s (26) power-law variance-mean relationship. Formulae for
calculation of optimum sample size based on the Poisson distri-
bution, the negative binomial distribution, and Taylor’s power-
law, with unrestricted random sampling, have previously been pub-
lished (1,12,13,24,28).

Now consider disease incidence data. Entomologists might col-
lect similar data by scoring the proportion of plants, or plant units,
damaged (c.g., 6). Suppose that of n = 360 individual plants
scored as either healthy or diseased in an unrestricted random
sample, 261 fell in the former category and 99 in the latter.
Whether a plant is diseased is described in terms of a random
variable, X, that may take one of two values, corresponding to
‘healthy’ or ‘diseased.’ For convenience, the two values that X
may take are denoted X = O for healthy and X = 1 for diseased.
The probability distribution of X is then P(X = x) = P =-p)x
= 0,1. This is the Bernoulli distribution, and p is the probability
of a plant being diseased (4). For the sample in question, pis
estimated by the mean incidence, £X;/n = 0.275 (X; = 0 for a
healthy plant, 1 for a diseased plant, i = 1,2,....,n; with n = 360
here). The theoretical Bernoulli variance is p(1 — P), which for the
sample in question is equal to 0.275 - 0.725 (=0.20 correct to two
decimal places). The observed variance of the sample is estimated
by Z(X; — p)*/(n - 1), which is also equal to 0.20 correct to two
decimal places. The two variances are identical if » is used as the
denominator in the calculation of the observed variance. This simple
illustration shows that, for incidence data, there is no information
about aggregation in an unrestricted random sample. Regardless
of the actual spatial pattern, the observed variance is equal to the
theoretical Bernoulli variance. In order to characterize aggrega-
tion in disease incidence data, an alternative approach is required.
This will then allow aggregation to be taken into account in the
determination of sample size.

Cluster sampling. In fact, the above example, based on data
from Snedecor and Cochran (25, Table 21.5. 1), provides data from
a cluster sampling procedure. In cluster sampling, the sampling
unit is not the individual (plant, in this case), but a group (‘clus-
ter’) of individuals, With disease incidence data, each individual
in a cluster is classified as healthy or diseased. For data of this
type, the lower limit is O (diseased individuals) per cluster, but
unlike count data, there is an upper limit, when every individual
in a cluster is diseased. From the number of individuals in a clus-
ter, and the number diseased, the proportion of individuals dis-
eased can be calculated.

In Snedecor and Cochran’s example, the 360 plants came from
N = 40 clusters (the sampling units were, in this case, quadrats),
each of n = 9 plants. The product Nn is the total number of indi-
viduals (in this case, plants) sampled. The numbers of diseased
plants out of 9 were 2, 5,1, 1,1, 7,0, 0, 3, 2, 3, 0,007,041,
2,6,0,0,1,54,0,1,4,2,6,0,2,4,1,7,3,5,0, 3, and 6. Now,
the sample mean incidence is estimated by p = Zp,/N = 0.275 (as
before), and the observed sample variance of the proportions is
estimated by vy, = Z(p; - p)*/(N - 1) = 0.067 (where the p; are the




proportions of plants diseased in each quadrat, i = 1,2,...,N; with
N = 40 here). These estimates of p and v,,, can also be obtained
from the numbers of diseased plants per quadrat. In this case,
sample mean incidence is estimated by p = ZX;/Nn (=0.275), and
the observed sample variance of the proportions is estimated by
Vobs = Z(Xi— np)n*(N — 1) (=0.067) (where the X; are the numbers
of diseased plants per quadrat, i = 1,2,...,N; with N = 40 here).
Note that with unrestricted random sampling for disease inci-
dence, X; could only take one of two values, but with cluster samp-
ling for disease incidence, X; can take any of n + 1 integer values,
from O to n, where n is the size of the sampling unit.

For grouped data, random proportions are often described by a
binomial distribution, for which the theoretical variance is, in prac-
tice, estimated by vy, = p(1 — p)/n, in which n is the number of in-
dividuals in a sampling unit. In fact, this formula provides an esti-
mate that is slightly biased and ignores the finite population
correction (3). Note that the formula for v,;, does not involve N.
The binomial variance for the sample in question is equal to
(0.275 - 0.725)/9 (=0.022). Since the observed variance is in ex-
cess of the theoretical binomial (random) variance (i.e., 0.067 >
0.022), aggregation of diseased plants is indicated. These vari-
ances can be used in significance tests of departure from a ran-
dom pattern of diseased plants (2,17).

It is important to realize that count data and incidence data have
different statistical properties and that these properties lead to dis-
tinct methods for spatial pattern assessment. Under most circum-
stances (and especially when p is larger than about 0.1), assess-
ments of pattern based on indices such as the variance-to-mean
ratio, the k parameter of the negative binomial distribution, and
Lloyd’s indices of mean crowding and mean patchiness (5) will be
erroneous when applied to disease incidence data (discussed in 17).

Aggregation can be thought of as the tendency for plants that
are in the same sampling unit to have the same disease status.
Mak (20) showed that the probability that any two members of
the same sampling unit have the same status (p;) is given by p, =
1 = 2p(1 = p)(1 - p), where p is the intracluster correlation coeffi-
cient. For any given value of mean disease incidence (p), p; in-
creases with p. The tendency for plants that are in the same samp-
ling unit to have the same disease status can, therefore, be measured
directly by estimating p.

The calculation of p (4, section 6.3) can be rather laborious,
since for data comprising N clusters, each of size n, p is a cor-
relation among Nn(n — 1) pairs (note, however, it is not a require-
ment for all clusters to be the same size). For Snedecor and Cochran’s
data, p = 0.24, based on 2,880 pairs (this calculation was carried
out using a set of MINITAB [22] command files for the calcula-
tion of p, available from the authors on request). When p = 0, this
indicates that the disease status of one plant in a cluster does not
influence the disease status of other plants in the same cluster.
Values of p greater than 0 characterize aggregation (the upper
limit of p is 1). Three methods of characterizing variance inflation
due to aggregation, by incorporating p, are outlined below.

First, Kish (14) defined the deff (design effect) as the ratio of
the actual variance of a sample to the variance of an unrestricted
random sample of the same size and showed that, to a good ap-
proximation, deff= 1+ p(n — 1). For Snedecor and Cochran’s data,
the deff is calculated by v,/vy,, using, for both variance esti-
mates, the formulae that reflect the cluster sampling procedure by
which the data were collected. Thus, deff = 0.067/0.022 = 3.05,
which corresponds to p = 0.26.

Second, just as the negative binomial distribution may be used
to characterize aggregation in count data, the beta-binomial distri-
bution may be used to characterize aggregation in incidence data
(10). For Snedecor and Cochran’s data, the maximum likelihood
estimate of the beta-binomial aggregation parameter 8 is 0.334
(16), and p = 6/(1 + 6) = 0.25. Note that the theoretical beta-bi-
nomial variance, written in terms of p, is equal to p(1 — p}(1 + p[n
— 1])/n: equivalent to the binomial variance (p[1 — p}/n) multi-

plied by a ‘heterogeneity factor’ (1 + p[n — 1]) that is, in effect,
the deff. There is a discrepancy between the empirically calculated
estimate of p and the estimate of p based on the assumption of a
beta-binomial distribution of number of diseased plants per quad-
rat because the observed data are not perfectly fit by the beta-
binomial distribution.

Third, just as Taylor’s power-law provides a method of sum-
marizing aggregation in count data from several data sets cover-
ing a range of mean values, an analogous relationship may be
used to characterize aggregation in incidence data from several
data sets (9). If v,y = Av,,” (in which A and b are parameters to be
estimated), it can be shown that:

n i | |
s fip) n R

in which a = An™ and f(p) = (p[1 - p])'"". When both A and b =
I, p =0 (and the deffis equal to 1). WhenA>land b=1, p> 0,
but aggregation, as characterized by p, does not vary with mean
incidence. That is to say, both p and the deff are constant when b =
1. When both A and b are greater than 1, this indicates that ag-
gregation varies with mean incidence in such a way that p is
smallest when p is close to 0 or 1 and largest around p = 0.5.
Since p can be written as a function of A, b, p, and n, the re-
lationship v,,, = Av,;,” effectively characterizes aggregation by the
systematically changing shape of an underlying set of frequency
distributions that are sampled when mean incidence is estimated.

Sample size determination. In a deservedly well-known paper,
Karandinos (13) gave formulae for determination of sample size
with a prespecified degree of reliability. Reliability was defined
either by the coefficient of variation or by setting one-half the
length of the required confidence interval of the estimated mean
equal either to a fixed proportion of the mean or to a fixed posi-
tive number. Various versions of the formulae were presented, ap-
propriate for different distributional assumptions about the data.
Subsequently, Wilson and Room (28) discussed the appropriate
formulae if Taylor’s power-law described the data. The formulae
given in Table 1 of Karandinos (13) and later in Tables 3.2 and
3.3 of Ruesink (24), Table 2 of Ives and Moon (12), and sections
13.5.4.1 and 13.4.5.2 of Campbell and Madden (1) are primarily
intended for use with count data and are appropriate for unre-
stricted random sampling. Here, the equivalent formulae appro-
priate for cluster sampling disease incidence data are derived. The
formulae presented are appropriate for randomly arranged clus-
ters but may be modified for other arrangements.

First, it is necessary to review briefly the ground covered by
Karandinos (13).

1) If reliability is defined by the coefficient of variation (C), the
relationship:

C=se(p)lp (2)

in which p is mean disease incidence and se(p) is its standard er-
ror, provides a basis for sample size determination.

2) If reliability is to be defined by a formal probabilistic state-
ment, then, by appeal to the central limit theorem, a confidence
interval for p can be written as:

ptz,, se(p)
in which z,, is the upper c/2 point of the standard normal distri-
bution. For a 95% confidence interval (1 — o = 0.95), 74, = 1.96.
Karandinos gave two ways of using this as a basis for sample size
determination.

a) If half the length of the required confidence interval is set
equal to a fixed proportion (H) of the mean (p):

2y " Se(p)=Hp (3)
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b) If half the length of the required confidence interval is set
equal to a fixed positive number (h):

2oy Se(p)=h @)

Now, in order to use these relationships, the appropriate formu-
lae for se(p) under different assumptions about the sampling dis-
tribution of p are required. In the formulae that follow (equations
5, 6, and 7), it is assumed that p and se(p) are based on N clusters
each of size n. If the binomial distribution is appropriate:

se(p) = y[p(l-p))/nN (3)

(11). If the beta-binomial distribution is appropriate:

se(p) = Jp(]-p)[]+ pn-1D1/nN (6)

(11), in which p is the intracluster correlation coefficient. Equa-
tion 6 reduces to equation 5 if p = 0. If the relationship v,,, =
Avy,? is appropriate:

se(p) = Jalp(1-p)*/ N @)

in which a = An™. Equation 7 reduces to equation 5 when A = 1
and b = 1. Obviously, equation 7 may also be derived by sub-
stituting equation 1 into equation 6. In each of equations 5, 6, and
7, se(p) is the square root of the appropriate theoretical variance
divided by the square root of N.

Equations 5, 6, and 7 can now be combined, in turn, with equa-
tions 2, 3, and 4 to produce formulae for optimum sample size de-
termination under different definitions of reliability and different
assumptions about clustering. These formulae (equations 8, 9, 10,
11, 12, 13, 14, 15, and 16) are shown in Table 1. The formulae in
Table 1 are written so that N (the number of clusters [sampling
units] required to estimate p with a prespecified degree of reli-
ability) rather than nN (the total number of individuals to be
sampled) is calculated. This is because the intracluster correlation
coefficient (p) will usually vary with cluster size (n). Hence, it is
preferable to retain the same n as was used to make a preliminary
estimate of the variance of disease incidence. If it is not possible
to control cluster size so that it is constant, the mean cluster size
can instead be used in the calculation.

Examples. Two examples are presented, based on previous studies
of spatial pattern for fungal diseases of grape (Vitis spp.) (18,23).
The first example concerns Eutypa dieback (caused by Eutypa

lata). A total of 22 assessments of Eutypa dieback incidence were
made in 8 vineyards over a 3-year period (23). Each assessment
provided a map of disease incidence, based on whether each in-
dividual vine exhibited Eutypa dieback symptoms. Thus, vine dis-
ease incidence was assessed. For the purpose of the present study,
the map for each disease assessment was divided into N quadrats
(128 < N <336), each of n =9 vines. The frequency distribution of
diseased vines per quadrat was compiled for each disease assess-
ment, and the observed and binomial variances of disease inci-
dence for each frequency distribution then were calculated. Figure
1 shows the relationship between the observed variance (Vops) and
the binomial variance (v,;,). The position of the data above the
line for the binomial distribution indicates that diseased vines had
an aggregated pattern. The fact that the regression line describing
the data is more-or-less parallel to the line for the binomial distri-
bution indicates that, in this case, aggregation, as characterized by
the intracluster correlation coefficient p, was effectively constant
over the range of mean disease incidence. Aggregation in the data
may, thus, be described equally well, either by the relationship
Vops = 1.25 - v, %7, or by fitting beta-binomial distributions to the
data with separate means for each disease assessment but with a
common value of 6. The latter procedure resulted in the common
value 0 = 0.053 (from which p = 0.05).

Figure 2 shows ‘sampling curves’ (relationships between N, the
required number of sampling units [in this case quadrats], and p,
mean disease incidence) based on the above analyses, when (for
example) reliability is defined by setting one-half of the 95% con-
fidence interval ((1 — o) = 0.95, z4, = 1.96) for mean incidence
(p) equal to a fixed proportion (for this example, H = 0.2) of p.
Note that this is effectively the same as defining reliability by the
coefficient of variation, with C = 0.1. For all practical purposes,
the number of quadrats required here is the same whether the cal-
culation is based on the relationship between the observed and bi-
nomial variances (equation 15) or on the beta-binomial distribution
(equation 12). The discase incidence data provide evidence of an
aggregated pattern of diseased vines, so the calculation of the re-
quired number of quadrats provides too low a value when based
on the binomial distribution (equation 9; Fig. 2). Where there is
evidence of aggregation, it would be misleading to claim that an
estimate of mean disease incidence had a particular reliability
status if the required number of quadrats had been calculated on
the basis of the binomial distribution.

Suppose, now, that p is expected to be about 0.2. Using Figure
2, equation 9 (the binomial case) gives N = 43 as the number of
quadrats (each of 9 vines) to be assessed. Equations 12 and 15
both give N = 60, the larger value reflecting aggregation of dis-

TABLE 1. Formulae® for calculation of number of clusters (N), each of size n, required for estimation of mean disease incidence (p) with a prespecified degree

of reliability

Sampling Reliability defined by

distribution Probabilistic statement: half length of confidence interval equal to

descriptor Coefficient of variation® Proportion of mean® Fixed positive number?

Binomial 1-p 1-p (z 2 (1-p) (z 2

distribution N=— (8) N =——.| 222 9) Y ASRLLN TN (10)
npC H n h

Beta-binomial

(1-p)1+ p(n-1))
distribution or N =—4-—

empirical deff® np C*
Vobs = Avbl'nb a Pi' 2 ( 1- P}b
(with a = An'?) N :_Cz—

2
(14) N=ap"(-p)’ (%] (15)

n

1-p)1 -1 an )} 1- )1 -1 an }
an oLl e )1_[%) 1z N PP P )1_[2) )

h

2
N=alp(1-p))’ (fzﬁ] (16)

* The formulae omit the finite population correction. This should be included if the sampling fraction is more than 10% (3).

® To derive each of the formulae in this column (equations 8, 11, and 14), substitute each of equations 5, 6, and 7, in turn, into equation 2.
¢ To derive each of the formulae in this column (equations 9, 12, and 15), substitute each of equations 5, 6, and 7, in turn, into equation 3.
4 To derive each of the formulae in this column (equations 10, 13, and 16), substitute each of equations 5, 6, and 7, in turn, into equation 4.

¢ Design effect.
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eased vines as characterized by Figure 1. If the area to be sampled
comprises a block of 2,500 vines, the population comprises, in
this case, 277 quadrats. Since the sampling fraction (f [=60/277 in
this case]) is more than 10% of the population, the finite popu-
lation correction (3) should be employed in the calculation of the
required number of quadrats. This involves multiplying se(p) by
the factor V(1 — f), in whichever of equations 5, 6, or 7 is appro-
priate. The effect is to reduce the required N to (1 - f)N, in this
case from 60 to 47. This is the number of (randomly selected)
quadrats to be assessed from the population in this example, when p
is expected to be about 0.2 and reliability is defined as in Figure 2.
The second example concerns grape downy mildew (caused by
Plasmopara viticola). A total of 108 assessments of downy mil-
dew incidence were made in a vineyard, in plots subjected to dif-
ferent fungicide regimes, in three different years (18). Each assess-
ment provided a record of the total number of leaves per shoot,
and the number of leaves diseased, for each shoot observed. Thus,
leaf disease incidence was assessed, with shoots as the sampling
unit. For each assessment, N = 15 shoots were observed, and the
disease status of each leaf was recorded. Since the number () of
leaves per shoot (i.e., individuals per sampling unit) varied (5 < n
< 30), a formula allowing for variable cluster size (3) was used in
the calculation of the observed variance of disease incidence for
each assessment. The binomial variance of disease incidence for
each assessment was calculated using the mean value of n. The
overall relationship between the observed variance (v,,) and the
binomial variance (v,;,) Was Vg, = 8.52 - v, (18, Table 2). The
binomial variance is raised to a power greater than 1, indicating
that aggregation of diseased leaves is greatest at values of p
around 0.5 and smallest at values of p close to 0 or 1, Figure 3
shows sampling curves based on this analysis (equation 15) and
on the binomial distribution (equation 9). In this case, N is the
number of shoots required for the estimation of p (mean disease
incidence), using the same reliability criteria as for Figure 2 (one-
half of the 95% confidence interval for p is set equal to a fixed
proportion, H = 0.2, of p). Madden et al. (18, Fig. 4) give a sim-
ilar example. Calculations of the required number of shoots based
on the binomial distribution provide misleadingly low values in
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Fig. 1. Relationship between the observed variance and the theoretical var-
iance for a random pattern (binomial distribution) for incidence of Eutypa die-
back of grapevine, caused by Eutypa lata (note the use of logarithmic scales
on both axes). Each point represents one disease assessment at a vineyard.
The solid line represents the ordinary least squares regression line fitted to
the points (log[v,,] = 0.096 + 0.97 - log[vy;,]), and the broken line represents
the binomial line (i.e., observed variance = theoretical binomial variance).
Munkvold et al. (23) contains information on disease assessments.

the middle of the range of mean disease incidence but may be
adequate at very low (and very high) levels of mean incidence.
Of the 108 assessments of downy mildew incidence, 75 pro-
vided data in which the number of diseased leaves per shoot could
be described by a beta-binomial distribution (with 0.003 < 6 <
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Fig. 2. Sampling curves for the number of vines required (N) for estimating
mean incidence of Eutypa dieback (p), with reliability defined by one-half of
the 95% confidence interval for p being set equal to a fixed proportion (H =
0.2) of p. The solid line is based on equation 15 (Table 1), with @ and b based
on the coefficients of the regression line fitted to the points in Figure 1. In
this case, the corresponding line based on equation 12 (Table 1) with p = 0.05
and n = 9 is indistinguishable from the line based on equation 15. The broken
line is for the binomial case and is based on equation 9 (Table 1) withn=9.
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Fig. 3. Sampling curves for the number of grape shoots required (N) for esti-
mating mean incidence of grape downy mildew ( p), caused by Plasmopara
viticola, with reliability defined by one-half of the 95% confidence interval
for p being set equal to a fixed proportion (H = 0.2) of p. The solid line is
based on equation 15 (Table 1), with a and b based on the coefficients of the
ordinary least squares regression line fitted to the relationship between the
observed variance and the theoretical variance for a random pattern (binomial
distribution) for 108 assessments of incidence of grape downy mildew (18,
Table 2). The upper broken line (- — -) is based on equation 12 (Table 1)
with p = 0.34 and n = 14. The lower broken line (---) is for the binomial case
and is based on equation 9 (Table 1) with n = 14. Madden et al. (18) contains
information on disease assessments.
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0.536), 25 provided data in which the number of diseased leaves
per shoot could be described by a binomial distribution (8 = 0),
and in 8 assessments, disease incidence was 0. Thus, for the data
set as a whole, 0 < p < 0.35. If, however, beta-binomial distri-
butions are fitted to these data, with separate means for each dis-
case assessment but with a common value of 0, as above with the
Eutypa dieback data, the value 8 = 0.509 is obtained (from which
p = 0.34). The latter procedure overestimates aggregation in the
data and leads to the calculation of a required number of quadrats
(using equation 12) far larger than actually needed, particularly at
low levels of mean incidence (Fig. 3). If the intracluster correla-
tion coefficient, p, is being used as a basis for the calculation of
optimum sample size, caution should be exercised about the pool-
ing of data from different disease assessments to obtain an esti-
mate of p, especially if the assessments cover a wide range of val-
ues of mean incidence. In general, such pooling will only be valid
if there is some evidence that p does not vary with mean inci-
dence, as with the Eutypa dieback data discussed previously.

Concluding remarks. Spatial heterogeneity is a function of
scale (15). It is to be expected that estimated values of the beta-
binomial aggregation parameter (0), the intracluster correlation co-
efficient (p), and the empirical deff will depend, to some extent,
on the size of the sampling unit. The scale-dependence of b in the
relationship v,y = Avy;,” has not yet been investigated, but Yamamura’s
work (29) on the scale-dependence of Taylor’s power-law (for count
data) suggests that the numerical value of this coefficient will prob-
ably also be influenced by the size of the sampling unit. There-
fore, one question that may arise in connection with cluster samp-
ling concerns the choice of an appropriate size of cluster (sampling
unit).

In practice, the observational scale for disease assessment will
depend on both the nature of the disease and on the objective of
the investigator. In some cases, there will be a natural sampling
unit: for example, the shoot is a natural unit for the assessment of
leaves for grape downy mildew incidence. However, when whole
plants are assessed as healthy or diseased (as with the Eutypa die-
back data), the sampling unit (a quadrat) does not necessarily have
an obvious, natural size. On purely statistical grounds, Cochran (2)
suggested that examination of the pattern of diseased plants was
facilitated by dividing an area into quadrats, each containing the
same number of plants, between 6 and 12 per quadrat. From a
biological point of view, methods for identification of natural spa-
tial scales of epidemics, discussed by Campbell and Madden (1,
section 11.4.2.4), may be useful, though care will be required to
ensure that the statistical approach adopted is compatible with the
analysis of disease incidence data. Examples of valid practices in-
clude the work of Gottwald et al. (7), who calculated the ratio
Vou/Vhin At a range of quadrat sizes as part of a study of spatial
pattern of sharka disease in stone-fruit orchards in eastern Spain,
and Madden et al. (19), who calculated the beta-binomial aggre-
gation parameter at a range of quadrat sizes as part of a study of
spatial pattern of aster yellows in lettuce fields in Ohio.

Like other formulae for sample size determination (13), those
in Table 1 require some preliminary parameter estimates. Speci-
fically, some idea of the mean and variance of disease incidence is
required. For the binomial distribution (i.e., when the pattern of
disease incidence is indistinguishable from random), only a pre-
liminary estimate of p is required, since the variance can then be
calculated for any specified value of n.

With aggregated patterns of disease incidence, preliminary esti-
mates of both the mean and variance of disease incidence are re-
quired. The latter depends on the intracluster correlation coefficient,
p. If the data are known to fit the beta-binomial distribution, p can
be estimated by 8/(1 + 0). If no distributional assumption can be
made about the data, a knowledge of the empirical deff fulfills the
requirement for information about p. However, aggregation (whether
assessed by p, 8, or the deff) often varies with mean disease
incidence. If the relationship v,,, = Av;,” has been established, the
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resulting formulae for sample size determination have the advan-
tage of being equally applicable over the whole range of mean
disease incidence.

It is clear from the sampling curves shown in Figures 2 and 3
that the required N may be large, especially when p is small and
disease is aggregated. In such circumstances (as noted by McArdle
[21] in a related context), few investigators will accept the sample
sizes required. One possibility would be to rearrange the formulae
in Table 1 so that they provide an estimate of the degree of re-
liability that can be achieved by taking N clusters, each of size n,
where N is determined by the budget available for sampling. Al-
ternatively, methods based on sequential (27) or inverse (8) samp-
ling may be appropriate. Note, however, these methods require
that disease symptoms are assessed in the field during sampling
and that this is not always the case (e.g., 7). The formulae in
Table 1 are appropriate as sampling guidelines whether or not the
investigator is able to determine the proportion or number dis-
eased at the time that sampling is taking place.
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