Involvement of Residues Within Putative α Helix Motifs in the Behavior of the Alfalfa and Tobacco Mosaic Virus Movement Proteins

Anne Berna

Institut de Biologie Moléculaire des Plantes, CNRS, Institut de Botanique, 28 rue Goethe, 67083 Strasbourg Cedex, France.
Part of this work was carried on in the Department of Biochemistry of Laval University (Québec, Canada) and supported by a grant from the Natural Sciences and Engineering Research Council of Canada (OGP 008971-1).
I thank N. Daigle, R. Blier, and M. J. Gagey for technical assistance; C. Lauleux (Université Laval, Québec, Canada) for oligonucleotide synthesis; R. N. Beachy (Scripps Institute, La Jolla, CA) for providing TMV-MP cDNA; C. Stussi-Garaud and T. Godfroy-Colburn (IBMP, Strasbourg, France) for allowing me to work in their lab. F. Bernier (Institut de Botanique, Strasbourg, France) is specially thanked for constructive discussions and critical reading of the manuscript.
Accepted for publication 1 May 1995.

ABSTRACT

The movement proteins (MPs) of both alfalfa mosaic virus (AMV) and tobacco mosaic virus (TMV) have a 15-amino acid putative α helix motif that is part of a larger domain involved in the cell wall (CW) localization of these proteins. These α helices have common features since they are amphipathic and contain two clusters of acidic amino acids, EE and DE. Mutations were introduced into these helices to investigate their role in CW localization and in the activity of the MPs. Results showed that both these motifs are involved in the CW localization of the MPs, although through different mechanisms: whereas the helical structure and the EE cluster of the AMV-MP were required for optimum CW localization, the DE cluster of the TMV-MP, but not the helical structure, was involved in this process. Chimeric proteins resulting from an exchange of the α helices between MPs showed that these sequences did not function in the complementary background. Moreover, the region around aa 61 of the TMV-MP is necessary for protein stability. Transgenic tobacco plants expressing a mutated AMV-MP in which the α helix was deleted or had its structure destroyed exhibited an abnormal development and a modified morphology. In parallel, a similar mutation of the TMV-MP yielded a nonfunctional protein that still accumulated in the CW but that did not compete with the viral MP during infection.

Additional keyword: cell wall targeting.

A plant is successfully infected by a virus provided that four steps are entirely completed: entry of the virus into one plant cell, replication of the viral genome, transport of viral components from the initially infected cell to neighboring ones (short distance movement), and transport of the infectious particles from the site of infection to noninfected organs via the conducting vessels (long distance movement). Short distance movement is partially controlled by viral nonstructural movement proteins (MPs), which therefore represent a main component in determining severity of disease.

MPs have been tentatively identified for many viruses (14,24, 29). Movement of viral components from cell to cell is thought to take place via plasmodesmatata. It is still uncertain whether virions or nucleic acids are transported from cell to cell. In any case, the diameter of plasmodesmata is too small to allow their passage, suggesting that one of the functions of the MPs would consist in enlarging the channels.

One possible mechanism for enlarging channels is exemplified by viruses that produce tubular structures. Cauliflower mosaic virus (CaMV), cowpea mosaic virus (CpMV), red clover mottle virus (RCMV), and tomato ringspot virus (TomRSV) induce tubular structures that associate with plasmodesmata or provide channels through the cell wall (CW). These tubules contain virus particles and are associated with MPs (27,42,46,49). The purified MPs of tobacco mosaic virus (TMV) (6), CaMV (7), alfalfa mosaic virus (AMV) (40), and red clover necrotic mosaic virus (RCNMV) (21,33) exhibit a cooperative but nonspecific nuclear acid binding function in vitro. Citovsky et al. (9) postulated that the MP of TMV might unwind the viral RNA so that the linear protein–nucleic acid structures can enter plasmodesmata. However this hypothesis is not supported by results obtained with the RCNMV MP, which does not unfold RNA (19).

Another mechanism for enlarging channels is the modification of plasmodesmatal size exclusion limit by MPs. Such a modification was demonstrated by microinjection experiments: injections of fluorescent dyes into transgenic plants expressing the MPs of TMV (47,50) and AMV (35), or coinjection of dyes with tobacco rattle virus (TRV) (17). Other experiments demonstrated that some MPs move rapidly from cell to cell when microinjected into one plant cell: the RCNMV MP (19) and the BL1 protein from bean dwarf mosaic geminivirus (31). These studies show that the size exclusion limit is sufficiently increased by the putative MPs to allow the passage of ribonucleoproteins but not of intact virions.

The subcellular localization of most MPs is in accordance with their role in plasmodesmatal modifications. Electron microscopic observations have shown that the TMV MP is present inside plasmodesmata (2,45), as are the MPs of RCMV (42), CPMV (46), and CaMV (27). The AMV MP was observed in the middle lamella of infected cells (43). Other MPs were detected in CW fractions (defined below): RCNMV (32), tomato black ring virus (13), and grapevine chrome mosaic virus (22). However, there are exceptions to this scheme: MP of cucumber mosaic virus was
detected in the nucleolus (28), whereas potato virus X MP was detected in the cytoplasmic inclusion bodies (12).

AMV and TMV are single-stranded RNA viruses, members of the genera *Ilarvirus* and *Tobamovirus*, respectively. The AMV-MP (32 kDa) is translated from the first cistron of RNA3 (30) whereas the TMV-MP (30 kDa) is expressed via a subgenomic RNA (3). Transgenic tobacco plants expressing the TMV-MP are able to complement the transport of the thermosensitive Ls1 TMV strain at the nonpermissive temperature (15). The TMV-MP produced by the plant accumulates in the CWs. Two domains involved in CW localization have been identified: stretches of 19 amino-acids (aa 195 to 213) (4), and 3 amino-acids (aa 3 to 5) (26). Deletion of these domains yields nonfunctional proteins (20) whose CW accumulation rate is lower than the wild-type protein. The AMV-MP accumulates in the CW of transgenic tobacco plants expressing this protein. Deletion of the N-terminal 77 amino-acids yields a protein that mainly localizes in the cytoplasm (18).

Sequence comparisons of the stretch of 19 amino-acids of the TMV-MP with the N-terminal domain of the AMV-MP, which are both involved in the CW localization of these proteins, show that they contain, respectively, part of and a complete 15 amino-acid putative α helix. Moreover, these α helices share several similar features: they are amphipathic and contain two clusters of acidic amino-acids EE and DE. In order to determine whether these α helices are involved in the CW localization of the MPs, deletions, site-specific mutations, and chimeric proteins were engineered. The subcellular localization of these proteins was assessed in transgenic tobacco plants. Some of these transgenic plants were also used to test the effect of the constitutively expressed mutated MPs on virus spread.

MATERIALS AND METHODS

Mutagenesis of the movement protein genes. Mutagenesis was carried out with the Altered Sites Mutagenesis System (Promega, Madison, Wis.). The HindIII site from the pAlter-1 phagemid was eliminated by HindIII digestion, filling-in, and recircularization, resulting in the pAlter-H vector that was used for mutagenesis. Mutagenesis of the AMV-MP was started with a cDNA encoding a 12-amino acid N-terminally deleted MP, P3 Δ(1-12), (18). The XhoEcoRI fragment from M13mp7.P3, encoding P3 Δ(1-12), has previously been subcloned into pMON316 between the XhoI and EcoRI sites. The recombinant plasmid was digested with BgII, filled-in, and subsequently digested with EcoRI. The resulting insert was introduced into pAlter-H between Smal and EcoRI, yielding the plasmid named pA. Mutagenesis of the TMV-MP was started with a cDNA encoding a 9-amino acid C-terminally deleted MP, MP1 (4). The cDNA was digested with BamHI and EcoRI and subcloned into pAlter-H between the same restriction sites, yielding the plasmid named pT. To simplify the designation of the mutated proteins described in this article, P3 Δ(1-12) and MP1 were renamed mpA and mpT, respectively.

Mutations of the conserved amino-acids in the helical motifs were produced in mpA and pT plasmids using oligonucleotides (Fig. 1A), which replaced the (EE) cluster of the mpA protein and the (DE) cluster of the mpT protein with (AA). The mutated proteins were referred to as mpA-E and mpT-D. Introduction of a (GG) cluster inside the helical motifs was done on mpA and pT with the oligonucleotides described in Figure 1B. The resulting plasmids encode the mpA-G and mpT-G proteins, respectively.

**Modification of the HindIII sites (encompassing exactly two codons corresponding to KL residues) originally present in the mpA and mpT open reading frames was done with the pA and pT plasmids using the oligonucleotides described in Figure 1C, resulting in the plasmids named pA-H and pT-H, respectively. In the case of pT-H, the encoded mpT shows a conservative replacement of the K residue by an R residue. pA-H and pT-H were used for subsequent mutagenesis, consisting of the introduction of HindIII sites bordering the sequence corresponding to the helical motifs of mpA (amino acids 21 to 35) and mpT (amino acids 187 to 201). Creation of these HindIII sites was done with the oligonucleotides described in Figure 1D and E, respectively. The resulting double-mutated plasmids, pAnt and pTnt, were digested with HindIII and religated to remove the sequences corresponding to the helical motifs. In the encoded proteins, referred to as mpA-Δα and mpT-Δα, the deletion of the α helical motifs resulted in the addition of a KL cluster to the sequence. The pA plasmid was digested with CiaI, filled-in, and cut with EcoRI. The insert, encoding a 77-amino acid N-terminally deleted AMV-MP previously described as P3 Δ(1-77) (18), was introduced into pAlter-H between BamHI (filled-in) and EcoRI, yielding the pAC plasmid. The cDNA encoding a 73-amino acid C-terminally deleted TMV-MP, MP4 (4) was subcloned into pAlter-H between the BamHI and EcoRI sites, yielding the pTC plasmid. P3 Δ(1-77) and MP4 were renamed mpAC and mpTC, respectively. The HindIII-bordered-sequences encoding the α helices were obtained from HindIII digestion of pAnt and pTnt. Chimeric cDNAs were engineered by insertion of these α helices encoding sequences into the HindIII sites naturally present in the cDNAs encoding the mpA, mpT, mpAC, and mpTC proteins. This cloning procedure allowed the recovery of cDNAs (Fig. 2A and B) containing the sequence encoding an MP to which was added the cDNA encoding (i) the homologous α helix (mpAc-αT, mpTc-αT), (ii) the heterologous α helix (mpAc-αT, mpAc-αT, mpTc-αT, mpTc-αT), (iii) two or four copies of α (mpAc-2αA, mpAc-4αA), and (iv) the inverse of the sequence of α (inv-αT). Due to the introduction of HindIII sites, the chimeric proteins contained one or two additional KL residue to their sequence.

The GUS gene was excised from the plant shuttle vector pBl121.1 (Clontech) as follows: after digestions with SacI (filled-in), followed by Smal, the plasmid was religated and referred to as pBlAGUS. All the cDNAs were excised from the plasmids with XbaI and EcoRI (filled-in), and inserted into the pBlAGUS between XbaI and BamHI (filled-in).

DNA sequencing. All mutated plasmids were verified by sequencing using the T7 DNA Polymerase Sequencing System from Promega.

Plant transformation and preparation of subcellular extracts. The pBlAGUS containing the different cDNAs were introduced into *Nicotiana tabacum* cv. Xanthi NN using *Agrobacterium tumefaciens* (strain LBA 4404) mediated plant transformation (23). Subcellular fractions were carried out using
the highest producing plant lines. Subcellular extracts were prepared as previously described (4). Briefly, after grinding, the homogenate was filtered through a nylon cloth, yielding the filtrate, referred to as the soluble fraction (SOL), and a crude CW fraction (retained in the filter). The CWs were washed three times in the presence of 2% Triton X-100 to remove cytoplasmic contaminants, boiled 10 min in SB buffer (75 mM Tris-HCl pH 6.8, 9 M urea, 4.5% sodium dodecyl sulfate [SDS]) and filtered again. This filtrate is referred to as the CW fraction. In some experiments the proteins from the CW fraction were concentrated by precipitation with acetone. Total leaf extracts were prepared by grinding 20 mg of leaf in 80 μl of SB buffer. Subcellular extracts were obtained from fully expanded leaves of 6- to 8-week-old plants (16). Analyses of the subcellular partitioning of the mutated MP's were done on plants expressing comparable amounts of these proteins, e.g., the amount of the mutated MP's in the SOL fraction did not vary by more than fourfold among all plants tested.

Antisera, immunoblotting procedures, and protein quantification. Immunodetection of the AMV movement proteins was done with an antisera raised against the 12-amino acid N-terminally deleted AMV-MP, designated anti-P3 (18). Immunodetection of the AMV coat protein was done with an anti-AMV serum (43). TMV movement proteins were detected with an antisera raised against a 23-amino acid synthetic peptide corresponding to amino acid positions 6 to 28. The peptide was injected subcutaneously into a rabbit. The anti-mpT serum was collected after five injections, each containing 100 μg of peptide.

Proteins were separated by SDS-polyacrylamide gel electrophoresis (PAGE) using 12% gels and blotted onto a nitrocellulose membrane (Schleicher & Schuell, Dassel, RFA) with the Trans-Blot Semi-Dry Electrophoretic Transfer Cell (Bio-Rad, Richmond, Calif.). Electrophoresis was performed at 3.55 mA/cm² of gel for 45 min. Western blots were incubated overnight at 4°C with antisera (diluted to 1/5,000) in phosphate-buffered saline (PBS) (7.9 mM NaHPO₄, 1.5 mM KH₂PO₄, 150 mM NaCl; pH 7.5) containing 1% Tween 20 and 3% bovine serum albumin (BSA). After washing (2 x 20 min) with PBS + 1% Tween 20, blots were incubated 4 h with an alkaline phosphatase goat conjugated anti-rabbit antisera (Bio-Rad) in PBS + 1% Tween 20 + 5% dehydrated skimmed milk. Colorimetric reaction was performed in 100 mM diethanolamine (pH 9.7), 50 μg/ml Bromo-Chloro-Indoly-Phosphate, and 100 μg/ml Nitro Blue Tetrazolium. Reactions were stopped after 2 h. Immunoblots were scanned at 590 nm with a Shimadzu Flying Spot Scanner CS9000. Caution was taken to scan protein bands for which colorimetric reactions were of similar intensities and always below the saturation level. In the case of proteins that migrate as a doublet, the two bands were scanned together. The relative percentage of mutated protein that accumulated in the CW was calculated for each experiment as well as the average numbers and the standard deviations.

RNA manipulations. Preparation of total RNA was done by grinding 1 g of leaves with the Polytron apparatus in 2 ml of extraction buffer (200 mM Tris-HCl pH 9, 400 mM KCl, 35 mM MgCl₂, 25 mM EDTA). Immediately after grinding, 4 ml of phenol/chloroform (1:1) was added, and the mixture was stirred for 20 min. Nucleic acids in the aqueous phase were precipitated with EtOH. The pellet was washed with 800 μl (3 M sodium acetate pH 5.8) to solubilize DNA. Pelleted RNAs were washed twice with EtOH 70% and resuspended in 200 μl H₂O. Ten micrograms of total RNAs were loaded onto denaturating formaldehyde gels for Northern blotting analyses (38). RNA blots were probed with a random primed cDNA corresponding to the mpT coding sequence.

Movement complementation assays. Inoculation of tobacco leaves with TMV strains L and Ls1 (15) were done at virion concentrations of 0.2 μg/ml and 0.4 μg/ml, respectively, in 100 mM phosphate buffer (pH 7). One half of each leaf was inoculated with L and the other half with Ls1. Following inoculation, plants were kept at 33°C for 8 days (40 μl s⁻² m⁻², 16 h light per day) and temperature was shifted to 25°C for 2 days to allow necrotic lesions to develop. AMV inoculum was prepared by grinding 1 g of systemically infected leaves in 2 ml of phosphate buffer (pH 7). Leaves were inoculated with 300 μl of inoculum and inoculated plants were kept at 25°C during 10 days.
RESULTS

The aim of this work was to determine whether the putative 15-amino acid α helical motifs of the AMV-MP and TMV-MP are involved in their CW localization. The initial constructs encoded slightly truncated MPs, which were known to localize in the CW of transgenic tobacco plants (4, 18) in a manner similar to that of the complete MPs. The 12-amino acid N-terminally deleted AMV-MP (mpA) and the 9-amino acid C-terminally deleted TMV-MP (mpT) both contained a 15-amino acid motif (amino acids 21 to 35 and amino acids 187 to 201, respectively) and were predicted to adopt an α helical conformation (5) (Fig. 3A and C). Mutated MPs were engineered by in vitro mutagenesis. In one set of experiments, the sequences encoding the α helices were deleted or the properties of the putative α helices were modified. In another set of experiments, α helices were relocated to another part of the protein and/or exchanged to create chimeric proteins. The cDNAs encoding the mutated MPs described in Figures 2 and 3 were introduced into tobacco plants. For each construct a minimum of six independent transformants were obtained and grown to seed. Plants producing the highest amounts of foreign proteins were selected by immunodetection of MPs in total leaf extracts from the R₃ progeny of at least three of the transformants for each construct. The partitioning of the mutated MPs between the SOL and the CW fractions was assessed in two to four of these selected plants by scanning four to seven immunoblots. A typical immunoblot is presented in Figure 4 and values of the relative CW accumulation of each protein are reported in Table 1. The ability of some mutated MPs to potentiate virus movement was also tested.

Characterization of putative α helices from AMV- and TMV-MPs. The putative α helices of mpA and mpT, designated as αA and αT respectively, share some similarities. They are of the same length and contain two clusters of acidic amino acids, EE and DE, separated by hydrophobic residues. Moreover, helical wheel diagrams (39) revealed the amphiphatic nature of these helices (Fig. 3B and D). This is particularly obvious for αT, in which six acidic residues out of seven compose the polar half of the helix. The polar half of αA is not as highly charged as αT (four polar residues out of seven), and the hydrophobic part contains one polar residue. Interestingly, αT is flanked by GQG and P residues located at the N-terminal and C-terminal borders, respectively. These residues are strong helix breakers and are often found to border α helices (25). However, αA is not flanked by such amino acids. In the chimeric proteins mpAc-invαT and mpTc-invαT (Fig. 2A and B), the inverse of the sequence of αT, invαT, was predicted to adopt a strong α helical conformation because of the presence of H residues near the borders of the helix (positions 4 and 15) (1, 5). This helix is amphiphatic (Fig. 3E) because its polar half contains seven polar residues out of nine but, as opposed to αT, it contains basic and acidic residues.

Involvement of the putative α helical structure and sequence in the behavior of the MPs. The importance of the putative helical structure in the localization of mpA and mpT was investigated by introducing a GG cluster into the helices. These residues introduced flexibility in the molecule and destroyed the helical structure (5,36). The GG clusters were inserted into the αA and αT helix as described in Figure 3A and C, respectively. An immunoblot of the resulting mutated proteins (mpA-G, mpT-G) in the SOL and CW fractions is presented in Figure 4A and B. Comparison of the migration pattern of mpA-G versus mpA and mpT-G versus mpT indicates that these proteins did not migrate according to their predicted molecular weight. Whether these differences were due to structural alterations or post-translational modifications was not determined. mpA and mpT localized mainly in the CW fraction (Table 1) as do the wild-type proteins (16,18). Interestingly, the relative amount of mpA-G in the CW fraction was reduced by about threefold compared with that of

Fig. 3. Characterization of the mutated movement proteins. A, The cDNA encoding the 12-amino acid N-terminally deleted AMV movement protein, mpA, contains the putative α helical motif αA (aa 21 to 35). The amino acid sequence of this domain is shown in the αA box. The acidic amino acid clusters are underlined and mutated or introduced residues are in larger characters. Replacement of the EE cluster of αA by AA yields αA-E and the corresponding mutated protein is referred to as mpA-E. Introduction of a GG cluster inside αA yields the αA-G motif and the corresponding protein is referred to as mpA-G. B, Helical wheel diagram of the αA and αA-E putative helical motifs. Helical wheels are separated into a polar and a nonpolar face. Acidic residues are in bold and mutated residues are in larger characters. C, The cDNA encoding the 9-amino acid C-terminally deleted TMV movement protein, mpT, contains the putative α helical motif αT (aa 187 to 201). The amino acid sequence of this domain is described in the αT box. The acidic amino acid clusters are underlined and mutated or introduced residues are in larger characters. Replacement of the DE cluster of αT by AA yields αT-D and the corresponding protein is referred to as mpT-D. Introduction of a GG cluster after the DE cluster yields the αT-G motif and the corresponding protein is referred to as mpT-G. D, Helical wheel diagram of the αT and αT-D putative helical motifs. Helical wheels are separated into a polar and a nonpolar face. Acidic residues are in bold and mutated residues are in larger characters. E, Helical wheel diagram of the peptide encoded by the inverted orientation of the αT encoding cDNA (invαT).
mpA. In contrast, the relative amount of mpT-G in the CW was similar to that of mpT.

The role of the complete sequences encoded the α helices for mpA and mpT behavior was investigated by removing the entire 15-amino acid α helical motifs from the proteins. The deletion of the α helical motif of mpA lowered the relative CW amount of mpA-Δα (Fig. 2A) by about threefold compared with mpA (Table 1). The deletion of αT in mpT was done together with a conservative mutation at amino acid 60 (K changed to R). The resulting deleted protein (mpT-Δα, Fig. 2B) was never detected in plants although it was verified by Northern analysis that the corresponding RNA was expressed at the same level as in mpT expressing plants (data not shown). The more likely explanation is that mpT-Δα is unstable, assuming that the conservative amino acid substitution cannot by itself destabilize the protein.

Involvement of the conserved acidic amino acids of the helices in the behavior of the MPs. In order to gain information on the role of the conserved acidic amino acids, one of the clusters was replaced with AA in both mpA and mpT, changing the net charge of the helices. These mutations did not modify the helical structure of the helices (5). In mpA, switching of the EE cluster (aa 25 to 26) to AA (mpA-E, Fig. 3A) resulted in an α helix (αA-E) showing a diminution of the charge in the polar half. However the amphipathic character was even more pronounced than in the wild-type helix because the hydrophobic part of the mutated helix lost its only polar residue (Fig. 3B). In αT, switching of the EE cluster (aa 195 to 196) to AA (mpT-D, Fig. 3C) resulted in an α helix conserving its amphipathic character even though the net charge of the polar half was reduced (Fig. 3D). Immunodetection of these proteins in total extracts from R2 transgenic plants revealed that they were expressed at less than 10% of the level of mpA and mpT, respectively, in no more than 20% of the R2 plants, whereas production of the corresponding RNAs was similar to the mpA and mpT expressing plants (data not shown).

Some R2 plants expressing mpA-E and mpT-D to levels comparable to those of MPs were subjected to subcellular fractionation. Immunoblots revealed that mpA-E did not migrate at a rate consistent with its predicted molecular weight (Fig. 4A), probably because of charge modifications. The migration of mpT-D did not seem affected by such a change (Fig. 4C). These mutations reduced the relative accumulation in the CW by about threefold for mpA-E compared with mpA, and by about 11-fold for mpT-D compared with mpT (Table 1).

Are the AMV and TMV MPs α helices equivalent in subcellular partitioning? In order to determine whether αA and αT could be exchanged without modifying the subcellular localization of the proteins, chimeric proteins were engineered by switching the natural α helix with the one from the heterologous protein. Immunodetection of mpA-αT (Fig. 2A) was presented in Figure 4. This protein always migrates as a doublet. In contrast, mpT-αA (Fig. 2B) was never detected in plants expressing the corresponding RNA at a normal level. Table 1 shows that the replacement of αA by αT in mpA did lower by about threefold the relative CW accumulation of the chimeric protein compared with mpA, meaning that the TMV-MP α helix is not sufficient by itself to promote the AMV-MP CW localization.

Complementary experiments were undertaken to determine whether the helices themselves have the ability to translocate proteins to the CW. In this perspective, the putative α helical motifs, αA and αT (Fig. 3A and C), were introduced into the mpAc and mpTc proteins (Fig. 2A and B), known to localize mainly in the cytoplasm and no longer containing the α helical motif (4, 18), to determine whether they would change their localization. In previous studies, neither mpAc nor mpTc could be detected in the CW (4,18) but optimization of the experimental procedure allowed the detection of mpAc and mpTc in the CW fraction. Figure 4A shows that mpAc always migrated as a doublet and that all the mpAc derived proteins were detectable. In contrast, the mpTc derived proteins were never detected although the corresponding RNAs were produced at a normal level (data not shown). This suggests that a domain of the TMV-MP located around aa 60 to 61 that is important for stability was disrupted in the chimeric proteins. Analyses of the subcellular partitioning of the chimeric mpAc derived proteins gave some unexpected results (Table 1). Actually, introduction of αA into mpAc (between aa 112 and

![Fig. 4. Immunodetection of the movement proteins in transgenic plants. Plant extracts were separated on 12% polyacrylamide gels. The amount of fresh leaf (mg) corresponding to the material loaded on each lane is indicated in parentheses. The AMV-MP (P3) derived proteins were immunodetected in the soluble (SOL) (A) and cell wall (CW) fractions (B) with an anti-P3 serum. A, Lanes 1: mpA (5.7); 2: mpA-G (8.6); 3: mpA-Δα (5.7); 4: mpA-Δα (4.3); 5: mpA-αT (34); 6: mpAc (34); 7: mpAc-αA (5.7); 8: mpAc-2αA (8.6); 9: mpAc-αT (26); 10: mpAc-αT (8.6). B, Lanes 1: mpA (4); 2: mpA-G (30); 3: mpA-E (60); 4: mpA-Δα (20); 5: mpA-αT (240); 6: mpAc (240); 7: mpAc-αA (120); 8: mpAc-2αA (240); 9: mpAc-αT (480); 10: mpAc-αT (480). C, Immunodetection of the TMV-MP derived proteins in the SOL (lanes 1 to 4) and in the CW (lanes 5 to 8) fractions with an anti-mpTc serum. Lanes 1: mpT (8.6); 2: mpT (8.6); 3: mpT (17); 4: mpTc (17). Lanes 5: mpT (40); 6: mpTc (40); 7: mpTc (240); 8: mpTc (240). Lanes C and C' correspond respectively to 8.6 mg of SOL and 120 mg of CW extracts from non-transformed plants. Electrophoretic mobilities of the complete AMV-MP (A) and TMV-MP (B and C) are indicated by arrows in the margin.

| TABLE 1. Relative cell wall (CW) accumulation of mutated and chimeric movement proteins (MP) expressed in transgenic tobacco plants |
|-----------------|-----------------|-----------------|-----------------|
| Protein | Percent CW | Protein | Percent CW |
| mpA | 80 (10.2) | mpT | 55 (5.2) |
| mpA-G | 24 (6.9) | mpT-G | 55 (10.5) |
| mpA-Δα | 24 (7.2) | – | 24 (7.2) |
| mpA-αT | 28 (11.2) | mpT-D | 5 (3.8) |
| mpAc | 17 (6.3) | mpTc | 9 (4) |
| mpAc-αA | 13 (5) | – | 28 (11.2) |
| mpAc-2αA | 5 (0.8) | – | 28 (11.2) |
| mpAc-αT | 12 (11.5) | – | 28 (11.2) |
| mpAc-αT | 10 (2.4) | – | 28 (11.2) |

* Aflafo mosaic virus (AMV)–MP derived.
* Soluble (SOL) and CW fractions were prepared from plants expressing modified MPs and immunoblotted. The bands corresponding to the modified proteins were scanned and the relative percentage of CW accumulation of each protein was calculated. At least 4 immunoblots were done for each protein and the average values are presented as 100 × CW accumulation / (CW + SOL) accumulation.
* Tobacco mosaic virus (TMV)–MP derived.
* The standard deviation is indicated in parentheses.
113) resulted in a threefold increase of the CW accumulation of mpAα-αA versus mpA. However, no increase was gained when two αA or αT were introduced in mpAα (mpAα-2αA, mpAα-αT). Introduction of inv-αT did result in a slight increase of CW accumulation of mpAα-inv-αT versus mpAα.

Phenotypic modifications and virus movement in some transgenic plant. Important phenotypic modifications were observed for plants expressing mpAα-Δα and mpAα-G. The growth rate of these plants was reduced proportionally to the amount of foreign protein produced. Leaves were rounded, curled, and thick, with a pale green color resulting from a fine yellow mosaic. Dimorphism of the two leaf halves was often observed, one half being atrophied. At similar expression levels, plants expressing mpAα-Δα exhibited slightly less pronounced phenotypic modifications than mpAα-G producing plants. Such modifications were also observed on plants expressing mpAα-αT.

Infection of plants expressing mpT-G, mpT-D, or mpTc with L and Ls1 viruses at 35°C showed lesion size and numbers similar to those observed on nontransformed control plants. This implies that these mutated proteins are not able to complement the Ls1 movement. Moreover, even if the nonfunctional mpT-G accumulated normally in the CW it was not able to protect the plant against TMV.

Infection of plants expressing mpAα-Δα and mpAα-G with TMV resulted in local lesions of normal size but their number was about 10-fold lower than that on nontransformed control plants. Infection of mpAα-G expressing plants with AMV resulted in a reduction of coat protein production in inoculated leaves of about fivefold compared with control plants. Moreover, it seemed that long distance transport was reduced; at 14 days postinoculation, the upper leaves were not infected, whereas systemic infection was detected in more than 70% of nontransformed control plants.

DISCUSSION

This study deals with the role of putative α helical motifs, present in the AMV-MP and TMV-MP in their subcellular localization. The respective roles of the helical structure and of the primary sequence were investigated by deletions, point mutations, and engineering of chimeric proteins. These modifications were made on slightly truncated proteins that were previously shown to accumulate in the CW in a manner similar to the intact ones: an AMV-MP and a TMV-MP deleted by 12 and 9 amino acids, respectively, at the N-terminal end (mpAα) or C-terminal end (mpT). Moreover, mpT had already been shown to retain its transport function (4). In addition, truncated proteins, mpAα (77 aa N-terminally deleted AMV-MP) and mpTc (73 aa C-terminally deleted TMV-MP), which exhibit a highly reduced accumulation in the CW (4,18), were also used.

In order to determine whether the putative α helix motif is involved in the CW accumulation of the MPs, these motifs were deleted from mpAα and mpT to yield mpAα-Δα and mpT-Δα. Analysis of the localization of the deleted proteins showed that the CW accumulation of mpAα-Δα is reduced by about threefold compared with mpAα. Assuming that switching the M residue (aa 36) to an L one is not sufficient to affect the behavior of mpAα-Δα, this means that the α helix is probably involved in optimizing the CW localization of mpAα. However, such a deletion seems to destabilize mpT-Δα so no conclusion can be drawn for this construct.

The role of the helical structure per se in the CW accumulation process was investigated by engineering mutated proteins containing a GG cluster inside the helical domain. Such a mutation will result in the breakage of the helical structures of the mutated proteins mpAα-G and mpT-G (5). As a consequence of these mutations, the CW accumulation of mpAα-G was reduced by about threefold compared with mpAα, whereas mpT-G accumulated in the CW with the same efficiency as mpT. This indicates that the helical structure of the 15-amino acid motif is necessary for the CW accumulation of mpAα but is dispensable for the CW localization of mpT. Another explanation, which seems less likely, is that the tertiary structure of the mutated proteins was changed by the deletion of the 15-amino acid sequence or the introduction of a GG cluster. Such a change might modify the subcellular partitioning of these proteins.

The role of the primary sequence of the α helices in the CW localization was also examined. Actually, the α helices of the AMV-MP and TMV-MP both exhibit an amphiphilic character and contain two similar acidic amino acid clusters, EE and DE, flanked by hydrophobic residues. These clusters are conserved in the template of mpAα (aa 25 to 26) and the DE cluster of mpT (aa 195 to 196) are switched to AA since replacement of charged amino acids with alanine residues is supposed to avoid the disruption of the tertiary structure (10). These clusters do play a role in the CW accumulation of mpAα and mpT because their replacement with AA residues lowered the relative CW accumulation of the mutated mpAα and mpT by threefold and 11-fold, respectively. Charged residues found in clusters in the primary sequence are generally located at the surface of the folded protein and can be involved in protein-protein interactions (10,48).

Despite the fact that the acidic clusters are involved in CW localization of the MPs, other residues contained in the α helices are also important. The replacement of the α helix of the AMV-MP with that of the TMV-MP produced a chimeric protein (mpAα-αT) that accumulated in the CW only at a level similar to mpAα-Δα. This suggests (i) that the two putative helical sequences are not equivalent in the CW accumulation process and (ii) that, although the helical structure and the presence of the acidic clusters are important, they are not sufficient to allow CW accumulation of mpAα. Moreover, the C-terminally deleted mpTc protein, which stops just after the DE cluster (aa 196), and which does not contain the entire α helix, did not accumulate readily in the CW. Given the fact that the breakage of the α helix by the introduction of GG residues following the DE cluster did not reduce the CW accumulation of the mutated protein (mpT-G), it is likely that the residues that follow the DE cluster, which are not present in mpTc, are involved in the CW accumulation process. Interestingly, among these residues is an ED cluster (aa 199 to 201) that could be important for CW localization, as is the DE cluster.

In addition to the requirement of residues other than EE for CW localization of mpAα, some results strongly suggest that sequences around the α helix are also required in this process. Removal of the entire α helix motif lowers the CW localization by about threefold, but the CW accumulation level of mpAα, which no longer contains a large region around the α helix, is reduced by about 20-fold compared with mpAα. Interestingly, a highly hydrophobic domain (aa 46 to 67) located in this region could be necessary for attachment to membranes, thereby mediating the translocation to or the accumulation of mpAα in the CW. Moreover, the introduction of one mpAα α helix (αA) into mpAc, between aa 112 and 113, results in a threefold increase of the CW accumulation of the resulting chimeric protein (mpAα-αA) versus mpAα. Other hydrophobic domains are also present in mpAα, between amino acids 86 and 100, and between amino acids 157 and 176. Because mpAc is detectable in the CW, these domains could also be involved in the CW localization of mpAα. These domains might help αA target mpAc-αA to the CW. However, doubling the number of αA does not increase the CW accumulation compared with mpAα. The same negative results are found for chimeric proteins corresponding to the introduction of αT into mpAα. However, introduction of a strong α helical structure (inv-αA) into mpAc slightly increases the CW accumulation of the chimeric protein compared with mpAα. These experiments suggest that when the mpAα α helix is located at position 112 it might be able to promote by itself the CW accumulation of the recombinant protein (mpAc-αA), with, however, far less efficiency than
it does when located at its natural position (aa 21). Because invol-
volves T and oT does not increase the CW localization of the
chimeric proteins, this reinforces the idea that helical sequences
are not equivalent for CW localization.

Mutated and chimeric proteins also provided information about
the role of the a helices in protein stability. The introduction of
an a helix between amino acids 60 and 61 of mpT or mpTc yields
unstable chimeric proteins. Citovsky et al. (9) reported that this
region (aa 65 to 86) is involved in correct folding of the TMV-
MP. The deletion of the entire oT helix (aa 187 to 201) of mpT
probably destabilizes the deleted protein, because it is unlikely
that instability results only from the conformational change of the K
residue (aa 60) to an R one, or to the replacement of oT by a KL
cluster. The 15 amino acid helical structure is not required for the
stability of mpA and mpT because mpA-G and mpT-G are stable.
Reduction of the production of mpA-E and mpT-D versus nonmu-
tated MPs is in accordance with the fact that acidic amino acids
stabilize proteins (11).

The AMV-MP and the TMV-MP share several properties. Both
are associated with membraneous fractions, are single-stranded
RNA binding proteins, and bind RNA cooperatively (6, 40). Re-
ports on viral proteins containing an N-terminal amphiphatic a
helix show that these proteins generally interact with nucleic ac-
ids or membranes (34, 37) and can mediate protein dimerization
(44). It is tempting to speculate that the putative a helices of the
AMV-MP and the TMV-MP are involved in at least one of these
activities. Because these a helices are acidic, they are not good
candidates for interaction with nucleic acids. The AMV-MP nu-
cleic acid binding site has been localized between aa 35 and 81
and the a helical domain is not required for cooperative binding
(41). On its own, the TMV-MP contains two nucleic acid binding
domains: domain A extends from aa 112 to 185 and domain B
extends from aa 185 to 268. Domain B, which contains phospho-
sylation sites (8) and the a helix (187 to 201), was suspected by
Citovsky et al. (9) of being involved in protein-protein interac-
tions. These authors showed that the deletion of domain B does
not affect cooperative binding, suggesting that the a helix is
probably not involved in the dimerization of the TMV-MP. Re-
sults presented here show that the helical structure is necessary
for optimal CW localization of mpA and that the a helical motifs
of mpA and mpT are indeed involved in CW localization via
acidic residues.

In conclusion, the a helices of the TMV-MP and the AMV-MP
probably interact with membraneous or cellular proteins, thereby
promoting the translocation or the fixation of the MPs to the CW.
For the putative movement protein of the potato leafroll luteo-
rus virus such interactions arise via the hydrophobic portion of the hel-
x (44). However, as acidic amino acid clusters are involved in
CW localization of the MPs, interactions with cellular proteins
might arise via the hydrophilic half of the helix.

Interestingly, the expression of mpA-D and mpA-G in trans-
genetic tobacoo plants produced phenotypic modifications of these
plants. The reduction of the number of infection sites observed
after infection of these plants with TTMV could be due to the speci-
cific phenotype of these plants rather than to a reduction of viral
movement. The deleterious effect induced by the mutated MPs
probably results from modifications of interactions with cellular
proteins rather than from the modification of the subcellular
replication of these MPs. This reinforces the hypothesis that the a
helical motif(s) is involved in protein-protein interactions.

Some information was also gained about the involvement of the
TMV putative a helix in movement function. Plants expressing a
mutated protein obtained by replacement of the DE cluster by AA
residues are unable to complement the movement-defective TMV
strain Ls1. Because the CW accumulation of this protein is re-
duced, compared with the wild-type protein, and because the CW
is the presumed site of MP activity, it was not possible to con-
clude that the mutation destroyed the movement activity. On the
contrary, introduction of GG residues into mpT (mpT-G) did not
lower the CW accumulation of the mutated protein but the move-
ment of Ls1 was not complemented, indicating that mpT-G is
not a functional protein. Unfortunately, plants expressing mpT-
G are not protected against infection. It could be that conforma-
tional changes of the protein weaken the binding of mpT-G to
the site of action, so that the mutated MP will be easily displaced
by the MP from the infecting TMV.

LITERATURE CITED

helix stability at all positions in the helix interacting with the backbone

2. Atkins, D., Hall, R., Wells, B., Roberts, K., Moore, P., and Beachy, R. N.
1991. The tobacco mosaic virus 30K movement protein in transgenic to-

tion of the RNAs from less-than-full-length, virus-related, nucleoprotein

1991. The TMV movement protein: Role of the C-terminal 73 amino acids

Arab Mol. Biol. 47:45-148.

movement protein of tobacco mosaic virus is a single strand nucleic acid

to-cell movement locus of cauliflower mosaic virus, encodes an RNA-

Phosphorylation of tobacco mosaic virus cell-to-cell movement protein by
a developmentally regulated plant cell wall-associated protein kinase.
Genes & Dev. 7:904-910.

9. Citovsky, V., Wong, M. L., Shaw, A. L., Prasad, B. V. V., and Zambryski,
P. 1992. Visualization and characterization of tobacco mosaic virus move-
ment protein binding to single-stranded nucleic acids. Plant Cell 4:397-411.

10. Cunningham, B. C., and Wells, J. A. 1989. High-resolution epitope map-
ing of hGH-receptor interactions by alanine-scanning mutagenesis. Scien-
tice 244:1081-1085.

11. Dae-pio, S., Anderson, D. E., Baeke, W. A. Dahlquist, F. W., and Mat-
thews, B. W. 1991. Structural and thermodynamic consequences of bury-
ing a charged residue within the hydrophobic core of T4 lysozyme. Bio-
chemistry 30:11521-11529.

12. Davies, C., Hills, G., and Baulcombe, D. C. 1993. Sub-cellular localiza-
tion of the 25-kDa protein encoded by the triple gene block of potato vi-
rus X. Virology 197:166-175.

1992. Virus-specific proteins in cells infected with tomato black ring nep-
ovirus: evidence for proteolytic processing in vivo. J. Gen. Virol. 73:
1609-1614.

15. Deom, C. M., Oliver, M. J., and Beachy, R. N. 1987. The 30-kilodalton
gene product of tobacco mosaic virus potentiates virus movement. Scien-
tice 237:389-394.

Beachy, R. N. 1990. Molecular characterization and biological function
of the movement protein of tobacco mosaic virus in transgenic plants.

17. Derrick, P., Barker, H., and Oparka, K. J. 1992. Increase in plasmodes-
mal permeability during cell-to-cell spread of tobacco rattle virus from

18. Erny, C., Schouwenaar, F., Jung, C., Gagey, M. J., Godfrey-Coburn, T.,
Stussi-Garaud, C., and Benna, A. 1992. An N-proximal sequence of the
alfalfa mosaic virus movement protein is necessary for association with

19. Fujiwara, T., Gieseman-Cookman, D., Ding, B., Lommel, S. A., and
Lucas, W. J. 1993. Cell-free trafficking of macromolecules through plasmodesmata potentiated by the red clover necrotic mosaic virus move-

20. Gafny, R., Lapidot, M., Benna, A., Holt, C. A., Deom, C. M., and
Beachy, R. N. 1992. Effects of terminal deletion mutations on function

