Development of a Detection System for Viruses of Woody Plants Based on PCR Analysis of Immobilized Virions

A. Rowhani, M. A. Maningas, L. S. Lile, S. D. Daubert, and D. A. Golino

First author: plant pathology specialist, second author: post graduate researcher, fourth author: staff research associate, and fifth author: USDA-ARS, research plant pathologist, Department of Plant Pathology, University of California, Davis, CA 95616; and third author: plant pathologist, USDA-ARS, National Germplasm Repository, Davis, CA 95616.

We thank J. K. Uyemoto for his constructive criticisms and detailed review of the manuscript.

This work was supported by the State of California, Department of Food and Agriculture Fruit Tree, Nut Tree and Grapevine Improvement Advisory Board, and by the American Vineyard Foundation.

Accepted for publication 6 December 1994.

ABSTRACT

The genomes of several viruses infecting woody host plants were found to serve as templates for the reverse transcriptase-polymerase chain reaction (RT-PCR) while still contained within their capsids as virions in solution. A detection system was developed in which the virions could be assayed by RT-PCR after recovery from solution by immobilization directly onto polypropylene or polystyrene surfaces. Components of crude plant extracts that could otherwise inhibit the RT-PCR analysis were washed away, and the immobilized virions could then be detected by the PCR reaction. Quantitative RT-PCR assays of virions bound nonspecifically to plastic were compared to those in which the viruses were bound by specific antiserum-directed immunocapture. Binding to plastic was inhibited to a greater extent by extracts of some of the host plants than was immunocapture.

Additional keywords: antigen capture-PCR, apple mosaic virus, cherry leafroll virus, citrus tristeza virus, grapevine fanleaf virus, prune dwarf virus, Prunus necrotic ringspot virus.

In woody crop species, effective virus disease control is predicated upon the use of healthy materials. There is no direct remedial treatment for viral diseases once infection becomes established in orchards or vineyards. However, early detection, quantitation, and control of virus infections in woody host crops may be difficult due to low or variable virus titers, uneven viral distribution within the plant, and the colored, oxidizing, cross-linking nature of woody plant extracts (5,20,24,25).

The development of a reverse transcriptase-polymerase chain reaction (RT-PCR) assay (15) provided a virus detection system with the sensitivity to potentially overcome some of the aforementioned difficulties. But the general application of this approach

This article is in the public domain and not copyrightable. It may be freely reprinted with customary crediting of the source. The American Phytopathological Society, 1995.

Vol. 85, No. 3, 1995 347
to the detection of viruses in woody host samples is often blocked because components of the plant extract can inhibit the enzymes of the RT-PCR assay. To circumvent this problem in grape tissue, a nucleic acid purification procedure was developed to remove the inhibitory components of the tissue extract (24). However, this procedure is time-consuming and not amenable to the processing of large numbers of samples. Enzyme-linked immunosorbent assay (ELISA) does allow for the facile detection of virus directly from extracts of woody plants, but ELISA lacks the sensitivity required for the detection of these viruses, which occur in low concentrations in their woody hosts (3,11,26).

Immunocapture-PCR (IC-PCR) is a combination of techniques that allows for the detection of low concentrations of viruses in oxidizing plant extracts. Inhibitory plant constituents are washed from immobilized virions, and the viral genome is then prepared in situ to serve as a template for reverse transcription (12,13,21,22,29). However, this approach to virus immobilization requires the prior purification of virus for preparation of antisera. Preparation of antisera may not be practical, especially for incompletely characterized or difficult-to-purify viruses.

Here we describe a virus immobilization technique that does not require the use of an antisera. Viruses from extracts of infected plants are nonspecifically bound directly to a solid support. After the washing away of the crude extract solution, these bound virions can be detected directly using RT-PCR analysis. The specificity of the direct binding-PCR (DB-PCR) assay is conferred by the virus-specific sequences encoded in the PCR primers. Because removal of the virus capsid is not necessary for the exposure of the viral genome to the initial reverse transcriptase stage of RT-PCR (3,21,30), immobilization, washing, and RT-PCR can be carried out sequentially in a single tube.

We have observed that polypropylene tubes not only bind virions, but also bind gamma globulin. We have used this capacity to simplify the IC-PCR procedure in parallel with DB-PCR, so that each procedure can be done completely in a single tube. This single-tube assay for IC-PCR was run in parallel with the DB-PCR assay in order to compare the utility of each in the analysis of viruses from extracts of woody plants. The comparison involved a panel of six viruses: cherry leafroll (CLR) and grapevine fanleaf (GFLV) nepoviruses; apple mosaic (APMV), prune dwarf (PDV), and Prunus necrotic ringspot (PNRSV) ilarviruses; and citrus tristeza closterovirus (CTV).

MATERIALS AND METHODS

Virus isolates and host plants. Viruses and hosts used included GFLV-100 (10) in grapevine (*Vitis vinifera* L.) and in *Chenopodium quinoa* Willd.; PNRSV isolate Fulton G (6) in cucumber (*Cucumis sativus* L.), and a PNRSV isolate in cherry (*Prunus avium* L. cv. Ukrainisch Griotte); a PDV isolate in peach (*Prunus persica* (L.) Batsch) and cucumber; CLR-VW-18 (18) in walnut (*Juglans regia* L.) and C. quinoa; APMV from American Type Culture Collection (ATCC, PV32) in cucumber and an isolate in rose (*Rosa dulce* Rehd.) with mosaic symptom; and quick decline strain of CTV in orange (*Citrus sinensis* (L.) Osbeck) courtesy of J. Ghazanfari, California Department of Food and Agriculture. The APMV-infected rose and all infected and healthy herbaceous plants were maintained in the greenhouse.

Oligonucleotide primers. Oligonucleotide primers for CLR, CTV, GFLV, and PDV were designed based on their nucleotide sequences. The primers for CLR were selected from the noncoding, homologous regions on RNA 1 and 2 between nucleotides 35 and 374 with the following sequences: 5’ GCTGCTTTTTCCACGAGTCAAACTAT 3’ (antisense primer) and 5’ GCCAGGAGCTTGAGGATTTCCAAAGC (sense primer; EMBL Accession No. Z32465). The CTV primers were from the coat protein region, between nucleotides 400 and 699 with the sequences: 5’ TAAACGGCTGGTTGAAATCCCGAACT 3’ (antisense primer; 17). The primers for GFLV were from the coat protein gene located at the 3’ end of RNA 2 between nucleotides 762 and 1,083, with the sequences: 5’ CCAAGTTTGGTTTTCCGAG AAGGA 3’ (antisense primer) and 5’ ACCGGATTAGCTGGTGAT 3’ (sense primer; 27). PDV primers were from the coat protein region located on RNA 3 between nucleotides 1,812 and 1,984, with the sequences: 5’ TAGTGGAATTTACAAAGGA 3’ (antisense primer) and 5’ ATGGATGCGGATGATGAAATAGT 3’ (sense primer; 1). The primers for APMV were from the partial sequence of RNA 3 cDNA, and its sequences were 5’ CTTCCGGCAACATGACCCTG 3’ (antisense primer) and 5’ GAATGTTGTACGATGTTATG 3’ (sense primer; courtesy of V. Pallas, CSIS, Spain). PNRSV primers from sequence information obtained from the 3’ end of RNA 3 were provided by J. Crosslin, Washington State University. The primers’ sequences were between nucleotides 127 and 423, as follows: 5’ CTTCCGGCAACATGACCCTG 3’ (antisense primer) and 5’ AGAGCTTGCTGACAGACGTCGAAG 3’ (sense primer). All primers were synthesized by OLIGOMER Inc., Wilsonville, Oregon. ELISA. The (F(ab’)-)ELISA technique (23) was carried out as described using polyvalent antisera raised in rabbits against APMV, CTV, and GFLV. For PDV, PNRSV, and CTV, the indirect-ELISA technique (16) was performed. Monoclonal asics, Na709, for PNRSV was purchased from Agdia, Inc., and monoclonal asics for PDV was provided by Ramon Jordan, USDA-ARS, Beltsville, MD. Polyvalent antisera for both PDV and PNRSV were produced in our laboratory. For CTV, anti-CTV polyvalent goat antisera (supplied by J. Ghazanfari, Central California Tristeza Eradication Agency, Tulare, CA) and anti-CTV polyvalent rabbit antisera (produced in our laboratory) were used.

Virus purification, RNA extraction, and sample preparation. The following methods were used to purify the viruses in this experiment: for GFLV in *C. quinoa*, as described by Savino et al (28); for PNRSV, PDV, and APMV in cucumber, as per Crosslin and Mink (4) and Fulton (7); for CTV in C. quinoa, as developed by Rowhani et al (25); and for CTV in orange as developed by Bar-Joseph et al (2). For all DB-PCR and IC-PCR experiments, a total of 50 μl of dilution buffer (500 mM Tris-Cl, pH 8.3, containing 2% PVP-40, 1% PEG 6000, 140 mM NaCl, and 0.05% Tween 20) containing 2 μl of purified virus sample (1 μg/ml) was added to each microcentrifuge tube or microplate well. Virus concentrations were estimated from absorbance at 260 nm, assuming an extinction coefficient of A260 = 25 being equal to RNA at 1 mg/ml and on the reported percentages of RNA for PDV, APMV, PNRSV, CTV, and GFLV as 14, 16 (9), 16 (8), 40 (14), and 33% (19), respectively. Therefore, the calculated virus concentrations of 1 mg/ml for PDV, APMV, PNRSV, CTV, and GFLV were A260 readings of 3.5, 4.0, 4.0, 10.0, and 8.2, respectively. RNA from purified GFLV preparations was phenol extracted and ethanol precipitated.

Plant extracts were prepared from young leaves of GFLV-infected grape, PNRSV-infected cherry, CTV-infected orange, APMV-infected rose, CLRV-infected walnut, and bark samples from PDV-infected peach. Symptomatic leaves of the herbaceous hosts (*C. quinoa* or *Cucumis sativus*) were used. Plant tissues were extracted in dilution buffer (1:10, w/v) using a polytron homogenizer (Model PT3000, Brinkmann) and extracts were strained through miracloth. The resulting aqueous solutions were used for DB- and IC-PCR amplification.

DB-PCR. Sterile 0.5-ml polypropylene microcentrifuge tubes (Outpatient Services, Inc., Petaluma, CA) were loaded with 50-μl aliquots of plant extracts or purified virus solutions and incubated at 37 C for 60 min. After three washes with ELISA washing buffer (PBS [8.0 g of NaCl, 0.2 g of K2HPO4, 2.9 g of NaH2PO4·12H2O, and 0.2 g of KCl per liter, pH 7.4) containing 0.05% Tween 20), cDNA synthesis was done directly in the tubes (i.e., without any disruption treatment of virion particles) by adding 19.5 μl of reverse transcription solution (2 μl of 10X PCR buffer [500 mM KCl and 100 mM Tris-Cl, pH 9.0], 2 μl of 5 mM dNTP mixture [Pharmacia], 4 μl of 25 mM MgCl2, also 0.5 μl of RNasin [40 units/μl, Promega Corp.], 1 μl of antisense primer [200 ng/μl], 10 μl of sterile distilled water), and 0.5 μl of cloned MMLV-reverse transcriptase (200 U/μl, Promega). This mixture was overlaid with mineral oil, and tubes were placed
buffer (1:25 dilution; 50 µl final volume) and aliquotted into micro-centrifuge tubes or microplate wells to achieve the following virus concentrations per reaction: 2 ng, 200 pg, 20 pg, 2 pg, 200 fg, 20 fg, and 2 fg. To determine the sensitivity of IC- and DB-PCR for detecting viruses in original hosts and alternate hosts, infected tissue extract (1:10, w/v) was mixed with healthy tissue extract (1:10, w/v), and fivefold serial dilutions were tested. The dilutions were made in healthy tissue extract to investigate the possibility of using DB- and IC-PCR in the detection of viruses from bulk samples collected from the field.

RESULTS

DB- and IC-PCR detection. Both DB- and IC-PCR consistently produced DNA products of the predicted sizes for all six viruses tested using purified or partially purified virus samples (Fig. 1), as well as crude homogenates of infected herbaceous and woody hosts (results not shown). Due to its restricted host range, CTV was not obtained from a herbaceous host, but only from citrus tissue. Specific product was not found in uninfected controls; no product was found in cases in which the PCR assay was attempted without the initial reverse transcriptase step.

Relative detection limits of DB- and IC-PCR. Tenfold serial dilutions of purified virus preparations were analyzed to establish the detection limits of DB- and IC-PCR tube assays for CLRV, GFLV, APMV, PDM, and PNRSV. Results are summarized in Table 1. With DB-PCR, the detection threshold ranged from 20 to 200 pg per 100-µl reaction. For IC-PCR, it ranged from 20 to 200 ng per 100-µl reaction. Gel electrophoretic analysis of the PCR products for APMV, for example, showed that PCR-amplified products were obtained with 20 pg of virus in the DB-PCR assay, while for IC-PCR in microcentrifuge tubes, it was 200 fg (Fig. 2, lanes 10 and 5, respectively).

Using a virus preparation of known concentration as a standard, we calculated that the minimum amount of GFLV we could detect as virions by standard RT-PCR was 20 fg per 100-µl reaction (Table 1). Removal of the coat protein from the virus by phenol extraction increased the sensitivity of the RT-PCR assay by a factor of two.

The PCR results using herbaceous and woody tissue extracts are summarized in Table 2. The detection limits of DB-PCR and IC-PCR were comparable when performed in microcentrifuge tubes in detecting PDV in peach extract, PDV and PNRSV in herbaceous host extracts, and CTV. However, DB-PCR was 25- to 625-fold less sensitive than IC-PCR in this assay for APMV, CLRV, and GFLV in their herbaceous hosts, and for viruses isolated from cherry, walnut, rose, and grape. An example of the PCR results is illustrated in the gel electrophoretic analysis of the PNRSV amplified products (Fig. 3).

The sensitivity of the IC-PCR single-tube procedure was equal to that of the microplate well method, except for the detection of CTV, which exhibited a slight but reproducible decrease in sensitivity using the single-tube method. An example of the results

TABLE 1. Evaluation of the sensitivity of standard reverse transcriptase-polymerase chain reaction (RT-PCR), immunocapture-PCR (IC-PCR), direct binding-PCR (DB-PCR), and ELISA for the detection of five viruses

<table>
<thead>
<tr>
<th>Virus</th>
<th>Standard RT-PCR</th>
<th>IC-PCR</th>
<th>DB-PCR</th>
<th>ELISA</th>
</tr>
</thead>
<tbody>
<tr>
<td>APMV</td>
<td>200 fg</td>
<td>200 fg</td>
<td>20 pg</td>
<td>2 ng</td>
</tr>
<tr>
<td>PDV</td>
<td>2 pg</td>
<td>20 pg</td>
<td>20 pg</td>
<td>2 ng</td>
</tr>
<tr>
<td>PNRSV</td>
<td>20 fg</td>
<td>20 fg</td>
<td>200 pg</td>
<td>200 pg</td>
</tr>
<tr>
<td>GFLV</td>
<td>20 fg</td>
<td>200 fg</td>
<td>20 pg</td>
<td>2 ng</td>
</tr>
<tr>
<td>CLRV</td>
<td>2 fg</td>
<td>200 fg</td>
<td>200 pg</td>
<td>200 pg</td>
</tr>
</tbody>
</table>

*APMV = apple mosaic virus, PDV = prune dwarf virus, PNRSV = Prunus necrotic ringspot virus, GFLV = grapevine fanleaf virus, and CLRV = cherry leafroll virus.

*Values represent detection limits expressed as virus concentrations per PCR reaction (100 µl) or ELISA reaction (200 µl). Purified preparations were serially diluted in sterile distilled water.
in the comparison of the single tube and microplate methods using IC-PCR is seen in the gel electrophoretic analysis of PNRSV. Amplified products from cherry extract (Figs. 3 and 4) showed the limit of sensitivity to be at the 5⁻¹ dilution (15,625X), using either microcentrifuge tubes or microplate wells (Fig. 3, lane 7, and Fig. 4, lane 7, respectively).

Comparison of DB-PCR and IC-PCR with other detection methods. The detection limits of ELISA and standard RT-PCR were determined using serial dilutions of purified virus samples for CLRV, GFLV, ApMV, PDV, and PNRSV. A comparison of the detection limits of ELISA, standard RT-, DB-, and IC-PCR in tubes is given in Table 1. Comparison of DB-PCR with ELISA showed a 10- to 100-fold improvement in detection sensitivity with the use of the PCR method; IC-PCR was 1,000- to 100,000-fold more sensitive than ELISA (an ELISA result is interpreted as positive if the A₄₀₅ reading is two or more times higher than that of the healthy plant control). Comparison of RT-PCR with DB-PCR showed a 100- to 10,000-fold increase in sensitivity for analysis of the virions directly in solution. RT-PCR was similarly more sensitive than IC-PCR, but by a smaller margin.

DISCUSSION

Although RT-PCR detection is four to six orders of magnitude more sensitive than ELISA for the viruses described here, phenolic...
compounds, polysaccharide, and other inhibitory components of tissue extracts prevent its direct application to viruses from woody hosts (5, 20, 24, 25). However, we have found that such inhibitors can be easily eliminated by immobilizing the virions to a solid support and washing. We have shown this in the comparison of two procedures, each of which removes inhibitory plant components to allow for the immediate application of RT-PCR analysis.

Use of the non-specific virion immobilization system, i.e., DB-PCR, has the benefit that virus-specific antisera is not required. The savings afforded by the independence of this system from the requirement for the production of an antiserum is balanced, however, in that the detection levels achieved by DB-PCR were generally lower than those of immunocapture analysis. The reduction in sensitivity was most evident in tissue extracts of woody host plants. In these extracts, inhibitors of virus binding lowered detection levels by as much as 600-fold.

<table>
<thead>
<tr>
<th>Pathogen*</th>
<th>Host plant</th>
<th>IC-PCR</th>
<th>DB-PCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ApMV</td>
<td>Cucurbita sativus</td>
<td>5^{++}</td>
<td>5^{-}</td>
</tr>
<tr>
<td>ApMV</td>
<td>Rosa silvestris</td>
<td>5^{-}</td>
<td>5^{-}</td>
</tr>
<tr>
<td>PDRV</td>
<td>C. sativus</td>
<td>5^{-}</td>
<td>5^{-}</td>
</tr>
<tr>
<td>PDRV</td>
<td>Prunus persica</td>
<td>5^{-}</td>
<td>5^{-}</td>
</tr>
<tr>
<td>PNRV</td>
<td>P. avium</td>
<td>5^{-}</td>
<td>5^{-}</td>
</tr>
<tr>
<td>PNRV</td>
<td>Prunus avium</td>
<td>5^{-}</td>
<td>5^{-}</td>
</tr>
<tr>
<td>GFLV</td>
<td>Chenopodium quinoa</td>
<td>5^{-}</td>
<td>5^{-}</td>
</tr>
<tr>
<td>GFLV</td>
<td>Vitis vinifera</td>
<td>5^{-}</td>
<td>5^{-}</td>
</tr>
<tr>
<td>CLRV</td>
<td>C. quinoa</td>
<td>5^{-}</td>
<td>5^{-}</td>
</tr>
<tr>
<td>CLRV</td>
<td>Juglans regia</td>
<td>5^{-}</td>
<td>5^{-}</td>
</tr>
<tr>
<td>CTRV</td>
<td>Citrus sinensis</td>
<td>5^{-}</td>
<td>5^{-}</td>
</tr>
</tbody>
</table>

*ApMV = apple mosaic virus, PDRV = prune dwarf virus, PNRV = Prunus necrotic ringspot virus, GFLV = grapevine fanleaf virus, CLRV = cherry leafroll virus, and CTRV = citrus tristeza closterovirus.

Values represent end-point dilution involving fivefold serial dilutions of infected tissue extract (1:10, w/v) in healthy tissue extract (1:10, w/v).

The IC-PCR technique detected all test viruses in femtogram ranges, demonstrating that the sensitivity of immunocapture allows virus detection at concentrations well below those detectable by ELISA. To simplify the previously described IC-PCR procedure (21), the single-tube format developed for DB-PCR was adapted. All steps of IC-PCR, including virus immobilization and PCR analysis, were carried out in the same tube (e.g., polypropylene microcentrifuge tubes), as described for the detection of human hepatitis A virus (13). The single-tube assay involved fewer manipulations than IC-PCR in microplate wells, thus lowering the risk of sample contamination and allowing the testing of much larger sample numbers. This method has been previously described for the detection of plum pox virus in infected apricots (29). Our results indicate that IC-PCR in a single tube was as sensitive as IC-PCR in microplate wells.

Standard RT-PCR analysis of virus in solution was the most sensitive detection system for samples free of PCR inhibitors found in woody host plants. However, the inhibitory substances contained in woody hosts could not be totally eliminated by diluting the tissue extract. Increased sensitivity of direct RT-PCR compared to IC-PCR (Table 1) was likely due to the inefficiency of complete recovery of virus from solution by immunocapture. We calculated that viral genomic RNA was directly accessible as template for the RT-PCR reactions in 50% of the virus particles in solution.

The PCR-based detection techniques described here simplify the methods currently used for the detection of woody host viruses, while dramatically increasing the level of sensitivity over that at which viruses are currently detected. This approach should benefit virus elimination programs by facilitating the analysis of small amounts of tissue generated in nursery cultured plants and in large scale testing of inventories from clean stock programs throughout the growing season. As the techniques of molecular biology become more common, the synthesis of primer primers based on double-stranded RNA-derived cDNA sequence data will become more prevalent. Thus, future research on widening range of viruses may well rely for specificity on sequence-specific primer binding instead of specific antisera and may employ DB- and IC-PCR for studies in epidemiology and host-pathogen interactions.

ADDENDUM

Since acceptance of this paper, ApMV (ATCC PV32) was found to react with antisera against PNRV.

LITERATURE CITED

