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ABSTRACT

Nelson, S. C. 1995. Spatiotemporal distance class analysis of plant disease
epidemics. Phytopathology §5:37-43.

Spatiotemporal distance class analysis is proposed as a new form of
spatiotemporal analysis of intensively mapped, binary data. The method
detects and quantifies attributes of nonrandom patterns of disease increase
in regularly spaced plant populations. The method tests the hypothesis
that healthy plants in a population have an equal (random) chance of
becoming diseased in the period between two disease assessment dates.
Mapped disease incidence evaluations from two assessment dates are
needed for the analysis. Expected spatial patterns of diseased plants for

the second assessment date are generated by assigning the number of
newly diseased plants to random spatial positions among the healthy
plant population observed on the first assessment date. Distance class
analysis techniques are used to compare these expected patterns with
the actual spatial pattern observed on the second assessment date. The
number, location, and configuration of significant distance classes are
used to evaluate the randomness of the observed spatial distribution.
Hypothetical examples and data from an epidemic of citrus variegated
chlorosis in Brazil and an epidemic of papaya ringspot in Hawaii are
presented to illustrate the procedure.

Two-dimensional distance class analysis was developed orig-
inally by Gray et al (6) to quantify spatial aspects of plant virus
epidemics in regular lattices of host plants. Guidelines for its
use and interpretation were improved and evaluated (11,12).
Applications of two-dimensional distance class analysis have
proved useful in the analysis of binomial spatial data from a
number of bacterial, fungal, and viral pathosystems (3,4,7,
9-11,15).

A significant limitation of the two-dimensional distance class
method is that analysis of pattern is restricted to single dates
of observation. Therefore, hypotheses concerning attributes of
disease increase cannot be tested directly. These spatial and
temporal attributes can be only inferred or recognized indirectly
from sequentially performed analyses.

Methodology based upon autocorrelation and time-series
analyses has been applied successfully to spatiotemporal disease
incidence data (13,14). These studies, however, required disease
assessments be made for subpopulations of plants located within
quadrats. Few distance-based procedures have been available for
analysis of spatiotemporal increase of disease incidence in a popu-
lation of individual plants. A more complete understanding of
epidemics may be dependent upon the ability of investigators
to test specific hypotheses about plant-to-plant patterns of disease
increase. Therefore, a method for directly assessing spatiotemporal
changes in patterns of disease presence or absence among indi-
viduals in a population could be a valuable tool for augmenting
our knowledge of pathosystems. The purpose of this paper is
to introduce spatiotemporal distance class analysis, a method for
evaluating and quantifying the randomness of the increase in newly
diseased plants from one assessment date to the next.

MATERIALS AND METHODS

Model assumptions and hypothesis. The spatiotemporal dis-
tance class model assumes that disease incidence data (presence
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or absence) are collected from a regular lattice or matrix of
sampling units (rows and columns) and that diseased units (e.g.,
plants and quadrats) remain diseased between two disease assess-
ments. Spatial locations of diseased units within the lattice are
defined by their X (row) and Y (column) coordinates with a total
of m diseased units observed on the first assessment date and
a total of n diseased units that become diseased between the first
and second assessment dates. Spatiotemporal distance class
analysis tests the hypothesis that the » diseased units are distrib-
uted randomly within the lattice. If this hypothesis is rejected,
then attributes of the nonrandom patterns can be described (e.g.,
average [ X, Y] distance of newly diseased units from previously
diseased units, directional increase of disease, and establishment
of secondary foci).

The basis for hypothesis testing in spatiotemporal distance class
analysis is the statistical comparison of an observed lattice with
computer-generated “expected patterns” of disease increase.
Within a lattice of the same dimensions as the observed data,
expected patterns are generated that have m diseased units in
the same [X, Y] coordinates as in the observed lattice but have
n newly diseased units that are randomly assigned with a pseudo-
random number generator (12) to previously nondiseased coordi-
nates. Four hundred expected maps are generated for each ob-
served data set.

Standardized count frequencies. Significance testing in spatio-
temporal distance class analysis is based on the comparison of
a standardized count frequency (SCF) calculated for each
observed [ X, Y] distance class with similar SCFs computed from
the expected patterns. An SCF is based on a tabulation of the
number of times that diseased units are separated by a given
[X, Y] distance. The total number of [ X, ¥ ] distance classes equals
the (row X column) dimensions of the observed lattice.

Calculation of SCF values begins at one corner of the observed
lattice with a systematic search for the first diseased unit, termed
“reference unit 1.” Once located, it is assigned an [X,Y]
coordinate. Each of the remaining (m + n) — 1 diseased units
within the lattice is also mapped to an [X, Y] coordinate. The
[X, Y] distance separations (i.e., distance classes) between each
of the (m + n) — 1 diseased units and reference unit 1 are calculated
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by the absolute differences in their X and Y coordinate values:
[1X, — Xi|,| ¥, — Y]], where X, and Y, represent the X and
Y coordinate values, respectively, for reference unit 1, and X;
and ¥, (i =2,3,...,[m+ n]) are the X and ¥ coordinates
in the lattice for the remaining (m + n) — | diseased units in
the lattice, respectively. The process of locating each (m + n)
— 1 diseased unit, assigning it an [X, Y] coordinate, calculating
the [X,Y] distance class between it and reference unit I, and
incrementing the “count frequency” (i.e., the number of times
that two diseased units are separated by a given distance class)
is repeated until all (m + n) — 1 diseased units are identified
and compared with reference unit 1. This procedure is then
repeated until each of the (m + n) diseased units is used as a
reference unit. Subsequently, the observed count frequency for
each distance class is standardized by dividing by the total number
of possible unit pairs in each respective distance class. SCF values
for distance classes from each of the 400 expected patterns are
calculated similarly.

Significance of the observed SCF for each [ X, Y] distance class
is determined by calculating the percentage of times it exceeds
or is exceeded by the 400 expected pattern SCFs tabulated for
the same distance class. If the value of the observed SCF exceeds
the expected SCF values >95% of the time, the SCF is deemed
significantly greater than expected (P = 0.05). Thus, more diseased
unit pairs are separated by that [X, Y] distance than would be
expected with a random occurrence of newly diseased units.
Similarly, when the value of the observed SCF exceeds the
expected pattern values <5% of the time, the SCF is deemed
significantly less than expected (P = 0.95).

The distance class matrix. The significance of SCF values is
summarized in a “distance class matrix.” The proportion of sig-
nificant SCF values relative to matrix size is an indication of
the degree of nonrandomness in the observed data. The relative
size, shape, and position of contiguous groups of significant SCF
values within the distance class matrix are used to describe and
quantify attributes of pattern. Of particular interest are character-
istics of the “core cluster™ and “reflected clusters™ within the dis-
tance class matrix.

Core clusters represent the average or typical organization of
newly diseased units in relation to previously diseased units. The
core cluster is defined as the group of contiguous, significant
(P = 0.05) SCF values for distance classes adjacent to the [X, Y]
region [0,0] of the distance class matrix. For patterns of disease
increase in units closely associated to previously diseased units,
the core cluster is expected to be relatively large and discrete.

To summarize the intensity of aggregation of newly diseased
units, a “proximity index” was defined as the ratio of the number
of significant SCF values (P = 0.05) in a core cluster to the
[X, Y] dimensions of the core cluster. For the denominator, the
[X, Y] dimensions of the core cluster are determined by locating
the maximum distance from the [0,0] distance class to which
contiguous, significant (P = 0.05) SCF values extend in both
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the X and Y directions. Thus, the proximity index is a measure
of the relative density of significant SCF values within the core
cluster.

Values for the proximity index range from a minimum value
near zero to a maximum value of 1.0 for rectangular core clusters
(i.e., when the number of significant SCF values in the cluster
equals its [X, Y] dimensions) (Fig. 1). When nonrandom disease
increase occurs to adjacent units, the value for the proximity
index is expected to approach 1. The value of the index is expected
to approach a minimum value for nonrandom disease increase.
The minimum values of the index are found for core clusters
of diagonal shape, e.g., extending from the [ X, ¥] distance class
[0,0] to [1,1], [2,2], [3,3] . . . [X, Y], where [ X, Y;] represent
the X and ¥ dimensions of the core cluster, respectively. Statistical
significance levels are not assigned to values of the proximity
index, but replicate values could be submitted to analysis of
variance. Hypothetical examples of core clusters with identical
X X Y dimensions but with different values for the proximity
index are provided (Fig. 1).

Contiguous groups of significant (P = 0.05) SCF values else-
where in the distance class matrix are known as reflected clusters,
which may indicate disease increase in secondary foci.

Analytical guidelines. Guidelines and criteria similar to those
recommended for two-dimensional distance class analysis were
adopted for spatiotemporal distance class analysis (6,11,12). Dis-
ease incidence on the first assessment date must be =1%. The
percentage of newly diseased units observed on the second assess-
ment date must be 10-90% of the remaining nondiseased popula-
tion. The maximum missing values for an observed data set is
20%. A minimum of 400 expected data sets is compared with
each observed data set. Slight variability in significance of SCF
values is expected to occur when the same data are analyzed
repeatedly because of differing randomizations in the expected
patterns. Diseased units must remain diseased throughout the
entire epidemic or, if rogued or absent, are rated as missing.

Relatively conservative guidelines were developed for inter-
pretation of the distance class matrix. The minimum total
significant SCFs (i.e., the total of those at P < 0.05 and those
at P =0.95) required to indicate a nonrandom pattern of disease
increase is 5% of the total number of distance classes. Data sets
with >80 significant SCF values are interpreted to be strongly
nonrandom. Edge effects are significant if =12.5% of the SCF
values at the right hand (X,,,) and bottom (Y,,,) edges of the
distance class matrix are significantly greater than expected (P
< 0.05).

Hypothetical example. A hypothetical example consisting of
two sets of arbitrarily fabricated data was created to introduce
the analysis and to demonstrate interpretation of nonrandom and
“nearly random” patterns of disease increase in 10 X 10 plant
lattices (Fig. 2). On the first assessment date, the data sets had
identical disease foci, each consisting of a single, rectangular
cluster of 24 diseased plants in a corner of the lattice (Fig. 2A

0
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Fig. 1. Hypothetical distance class matrices from analysis of spatiotemporal patterns in 10-row X 10-column plant lattices. The four distance class
matrices (A, B, C, and D) have core clusters of different sizes: 10, 15, 20, and 25 significant standardized count frequencies (SCF), respectively
(P = 0.05) within identical X X ¥ core cluster dimensions (i.e., 5 X 5). Values for the proximity index for A-D are 0.4, 0.6, 0.8, and 1.0, respectively.
@ = [X, Y] distance class with SCF significantly greater than expected (P < 0.05), and — = [X, Y] distance class with nonsignificant SCF value.
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and C), but they differed in the [X, Y] locations of 14 newly
diseased plants on the second disease assessment date. For the
nonrandom pattern of disease increase, newly diseased plants were
placed in close proximity and/or adjacent to previously diseased
plants. For the nearly random pattern of disease increase, newly
diseased plants were located distal to previously diseased plants
and showed no marked or consistent spatial relationship with
them or with each other (Fig. 2C).

Analysis of actual epidemics. Spatiotemporal data from two
epidemics were obtained: 1) citrus variegated chlorosis on citrus,
observed during 1989-1992 in Brazil and 2) papaya ringspot on
papaya (Carica papaya), observed during 1992-1993 on the island
of Oahu, Hawaii. The examples were chosen to demonstrate a
direct and an indirect approach for analysis of disease increase
attributes in actual epidemics.

Citrus variegated chlorosis. Since 1987, citrus variegated chloro-
sis, a new sweet orange ( Citrus sinensis) decline disease, has spread
rapidly in some states in Brazil (5,8). A xylem-limited bacterium
(Xylella fastidiosa) was a reported causal agent (2). The most
striking symptoms are the very small, yellow, acid fruit. Foliar
and fruit symptoms may be restricted to only one or two branches
on a tree; but in severe cases, all branches may be affected.

Data were available from an epidemic of citrus variegated
chlorosis in a Brazilian orange grove planted in 1983. Trees were
cultivar Natal sweet orange on Cleopatra mandarin (C. reshni)
rootstocks. In the grove, between-row spacing was 8 m, and within-
row spacing of trees was 6 m. From 1989 to 1992, yearly maps
of incidence of citrus variegated chlorosis in the grove were
produced (Fig. 3A, C, and E). Disease incidence was assessed
by observing visually diagnostic symptoms of citrus variegated
chlorosis. A subset of the data was selected for analysis (12 rows
X 77 plants per row). This subset included the initial disease
focus in the grove.
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Fig. 2. Maps of two hypothetical data sets and corresponding distance
class matrices depicting analysis of nonrandom and nearly random increase
of disease between two disease assessment dates. A and C, Maps of
nonrandom disease increase and nearly random disease increase,
respectively. M and + = diseased plant on first and second disease
assessment dates, respectively; and — = nondiseased plant. B and D,
Distance class matrices from spatiotemporal distance class analysis of
the data in A and C, respectively. € = [X, Y] distance class with
standardized count frequency (SCF) significantly greater than expected
(P < 0.05); & = [X, Y] distance class with SCF significantly less than
expected (P = 0.95); and — = [X, Y] distance class with nonsignificant
SCF value.

Papaya ringspot. Incidence of the viral disease papaya ringspot
was mapped monthly in two commercial plantings (approximately
6 ha) of papaya at Punaluu, Oahu, for 12 mo beginning in
September 1992. The adjacent fields were located in a valley in
which there were no other commercial plantings of papaya. The
papaya fields were separated by a windbreak of Adenanthera
pavonina (false wiliwili) trees more than 10 m tall. In one field,
plants were arranged in an approximately regular lattice of 24
rows and 32 plants per row. Row spacing was 3.5 m with 2 m
between plants. Trees were approximately 12 mo of age when
disease assessments began. On each assessment date, each plant
was inspected visually for diagnostic symptoms of papaya ringspot
(i.e., leaf mosaic, water-soaked streaking of petioles, and ring
spots on fruit). Diseased trees were identified, tagged, and rogued
by the farm manager.

For the purpose of illustration, a 20-row X 24-column subset
of the data is presented (Fig. 4). This was done to reduce the
proportion of missing values and to increase values for disease
incidence (in accordance with the analytical criteria and guide-
lines). Similarly, low values for increase in percent disease between
consecutive disease assessment dates disallowed a direct analysis
of disease increase for those assessment intervals. Alternatively,
indirect analyses were conducted that utilized overlapping disease
assessment intervals. To illustrate, assume three disease assessment
times, 1y, t5, and t;. Suppose that the assessment interval of direct
interest was from 1, to 3 but that a low value for percent disease
increase (e.g., 2%) between these dates disallowed direct appli-
cation of spatiotemporal distance class analysis to this interval.
A comparison of distance class matrices from an overlapping
analysis of disease increase from ¢, to t, and from ¢, to 1; was
expected to provide evidence of spatiotemporal attributes of dis-
ease increase between 1, and 15, Similarly, an alternative approach
was conducted for other assessment intervals whereby the refer-
ence date (e.g., 3) was held constant while previous dates were
allowed to vary.

RESULTS

Hypothetical example. The distance class matrices for the hypo-
thetical example revealed distinct differences between nearly
random and nonrandom disease increase between f; and 1, (Fig.
2B and C). In the nonrandom example, there were 24 of 99 (24.2%)
[X, Y] distance classes (excluding the [ X, Y] class [0,0]) with SCF
values significantly greater than expected (P < 0.05). The spatial
organization of these significant distance classes revealed the
nonrandomness. The presence of a relatively large and discrete
core cluster in the approximate [ X, Y] region [0-4,0-4] was taken
as direct evidence that increase of disease was likely to occur
in close proximity to previously diseased plants. Also, there was
a contiguous and discrete group of [X, Y] distance classes with
SCF values significantly less than expected ([6-7,0], [6-9,1],
[5-8,2-4], [5-7,5], [6-7,6], and [0-5,7]) (P = 0.95) (Fig. 2B). A
group of SCFs of this type was interpreted as reflecting potential
spatial limits of disease increase or an area or zone within the
field in which the occurrence of newly diseased plants was
uncommon. When disease increase was nearly random (Fig. 2C),
only three SCF values within the distance class analysis matrix
were significantly greater than expected (Fig. 2D), and the core
cluster size was equal to 1 (the minimum possible size).

Citrus variegated chlorosis. Increase of citrus variegated
chlorosis from 1989 to 1990 was strongly nonrandom (Table 1,
Fig. 3A and B). The large core cluster indicated that the spatial
location of newly diseased plants occurred almost exclusively in
close proximity to previously diseased plants. Within-row disease
increase and cluster expansion were evident on up to 17 trees
within a row and for the entire width of the lattice (12 columns)
(i.e., the X X Y dimensions of the core cluster). Additional evidence
for nonuniform increase of disease was indicated by a large group
of distance classes with SCFs significantly less than expected (P
= 0.95) within the distance class matrix. The approximate [ X, Y]
coordinates for this group were [26-49,0-6] (Fig. 3B). The increase
of citrus variegated chlorosis between 1990 and 1991 also was
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Fig. 3. Spatiotemporal distance class analysis of an epidemic of citrus variegated chlorosis in Brazil during 1989-1990. A, C, and E, Maps of
disease increase from 1989 to 1990, 1990 to 1991, and 1991 to 1992, respectively. B and + = diseased plant on first and second disease assessment
dates, respectively, for each assessment interval; 'and — = nondiseased plant. B, D, and E, Distance class matrices from spatiotemporal distance
class analysis of data in A, C, and E, respectively. 4 = [X,Y] distance class with standardized count frequency (SCF) significantly greater than

expected (P = 0.05); o= [X Y] distance class with SCF significantly less than expected (P = 0.95); and — = [X, Y] distance class with nonsignificant
SCF value.
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strongly nonrandom (Table 1, Fig. 3C and D). The size of the
core cluster was reduced from the previous disease assessment
interval (1989-1990), yet the relatively high value for the proximity
index still indicated that newly diseased plants occurred in close
proximity to previously diseased plants. In the assessment period
from 1991 to 1992, direct evidence for increase of disease in close
proximity to previously diseased trees was not detected; the core
cluster size was 1 (Table 1, Fig. 3E and F). Indirect evidence,
however, for continued localized increase of disease and/or
continued cluster expansion was the presence of a reflected cluster
in the distance class matrix (Fig. 3F). This cluster was defined
by the area within the approximate [X, Y] coordinates [46-75,
0-10]. These data were taken as evidence that the increase of
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Fig. 4. An epidemic of papaya ringspot in Hawaii. Map of healthy, missing,
and diseased plants in a 20-row X 24-column subset of data from a
commercial field of papayas at Punaluu, Oahu, during 1992-1993. 1-5
= Plant diseased with papaya ringspot in November 1992, February 1993,
March 1993, July 1993, or August 1993, respectively; — = healthy plant;
and . = missing value or dead plant.

disease from 1991 to 1992 occurred primarily near secondary
disease foci.

Papaya ringspot. Increase of papaya ringspot was strongly non-
random during each of the disease assessment intervals (i.e,
significant distance classes exceeded 8%). The size of the core
cluster within the distance class matrix and its shape and organiza-
tion indicated that increases in disease from November to July
and from November to August were likely to occur in close
proximity to previously diseased plants (i.e., generally within five
to six plant rows and nine to 11 plants within rows) (Table I,
Figs. 4 and 5A and B). The presence of reflected clusters during
the interval from November to August in the approximate [X, Y]
regions [22,1-6] and [20-23,11-17] was taken as evidence of the
presence of multiple disease foci within the field (Fig. 5B). These
data, in conjunction with the absence of reflected clusters during
the previous interval (November to July), were evidence that the
process of establishment of secondary foci of symptomatic plants
had begun between July and August 1993. The lower values for
core cluster size and proximity index for disease increase from
November to August compared with values for disease increase
from November to July were indications that increase of papaya
ringspot to proximal plants was less likely during the interval
from November to August than from November to July.

A significant edge effect was detected for disease increase during
assessment intervals from February to August 1993 and March
to August 1993, indicating that newly diseased plants were likely
to be found at the edge of the field (Table 1, Figs. 4 and 5C
and D). The size of the core cluster for increase of papaya ringspot
from February to August was much larger than from March
to August (15 and 2, respectively) (Table 1, Fig. 5C and D),
indicating that the probability of symptoms of papaya ringspot
developing on plants adjacent to diseased plants was low during
the period from March to August. The larger size of the reflected
clusters in the period from February to August compared with
the period from November to August was taken as evidence that
between February and August increase in symptom expression
occurred within and around secondary disease foci rather than
within and around the original (primary) focus of papaya ringspot.
The larger size and proximity of reflected clusters (Fig. 5D) in
the period from March to August compared with the period from
February to August was taken as evidence of coalescence of
secondary foci.

DISCUSSION

Spatial patterns of disease in plant populations reflect under-
lying interactions of biological and physical processes among host

TABLE 1. Summary statistics for spatiotemporal distance class analysis of citrus variegated chlorosis in Brazil during 1989-1992 and an epidemic
of papaya ringspot on Oahu, Hawaii, during 1992-1993

Disease Pattern of Reflected cl
incidence” disease Core Proximity SHECtRC CIusters Edge

Assessment interval (%) SCF+" SCF—* increase® size® index' Number Size effect®
Citrus variegated chlorosis

1989-1990 13-25 0.16 0.20 A 131 0.64 3 2 ns

1990-1991 25-50 0.11 0.13 A 97 0.71 2 2 ns

1991-1992 50-64 0.25 0.09 A I i 4 2-216 ns
Papaya ringspot

November-July 9-20 0.09 0.03 A 39 0.52 0 0 ns

November-August 9-21 0.09 0.03 A 25 0.46 4 2-7 ns

February-August 12-21 0.08 0.02 A 15 0.37 3 2-8 5

March-August 15-21 0.09 0.03 A 2 1.00 3 2-16 $

*Percentage of symptomatic plants at the beginning and end of the disease assessment interval, respectively.

*Proportion of [X, ¥] distance classes with standardized count frequency (SCF) significantly greater than expected (P < 0.05) compared with a
random distribution of newly diseased plants.

“Proportion of [ X, Y] distance classes with SCF significantly less than expected (P = 0.95).

9A = aggregated (nonrandom) pattern.

“Number of contiguous distance classes with significant SCF values (P = 0.05) within the X X Y dimensions of the core cluster; represents the
core zone of disease increase in relation to previously diseased plants.

"Measure of the density of newly diseased plants in the core cluster calculated as the number of significant SCF values in the core cluster/ X X ¥
dimensions of the core cluster. The index is not calculated when core cluster size = 1.

fns = Not significant, and s = significant.
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and pathogen(s) in a complex environment. Methods of descrip-
tive and quantitative pattern analysis provide insight into potential
cause and effect relationships in the increase of disease within
plant populations. Spatiotemporal distance class analysis permits
both a simple description of disease increase and a way to detect
nonrandomness and quantify attributes of disease increase and
clustering. The analysis also identifies important times of disease
increase, providing more insight into events that may have led
to the observed patterns in space and time.

The citrus variegated chlorosis data set presented herein is a
relatively small subset of the entire citrus grove studied but does
include the original focus of disease. The strong indication of
disease increase to adjacent plants both within and across tree
rows (in the original and secondary disease foci) implies a
contagious process that may involve a vector and suggests the
need for more data on the ecology of the causal agent and potential
vector(s). The evidence for the establishment of secondary foci
suggests the need for management strategies designed to reduce
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the probability of the establishment and expansion of multiple
foci.

The papaya ringspot epidemic was selected to demonstrate the
ability of spatiotemporal distance analysis to analyze disease
assessments in overlapping intervals. This is a viable, albeit in-
direct, approach to analyzing data sets with minimal increases
in disease incidence between assessments. Papaya ringspot data
also portray a spatial chain of events that occurred during the
epidemic. A conceptual model of such a chain of events could
be as follows: 1) the establishment of an initial focus of disease
within a field; 2) the “filling in” and radial expansion of the initial
focus; 3) the establishment of secondary foci; 4) the filling in
and expansion of secondary foci; and 5) the coalescence of initial
and secondary clusters and establishment of tertiary foci. Some
of the events within this conceptual model were identified within
the papaya field. For example, a comparison of distance class
matrices for disease increase from November to July and
November to August (Fig. 5A and B, respectively) revealed that
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Fig. 5. Distance class matrices from spatiotemporal distance class analysis of an epidemic of papaya ringspot in Hawaii representing patterns of
disease increase from A, November 1992 to July 1993, B, November 1992 to August 1993, C, February to August 1993, and D, March to August
1993. @ = [X, Y] distance class with standardized count frequency (SCF) significantly greater than expected (P < 0.05); &= [X. Y] distance class
with SCF significantly less than expected (P = 0.95); and — = [X, Y] distance class with nonsignificant SCF value.
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reflected clusters were detected during the interval from November
to August and not in the data from November to July (direct
analysis of disease increase from July to August was not possible,
given that the analytical criterion of a 10% increase in disease
increase between assessments was not satisfied). This was taken
as evidence for the establishment of secondary clusters of symp-
tomatic plants between July and August. A comparison of distance
class matrices for disease increase from February to August and
from March to August (Fig. 5C and D, respectively) revealed
a large difference in core cluster size between the two intervals.
The reduced core cluster for the interval from March to August
in relation to the interval from February to August (and the
larger reflected clusters) indicated that by March, most of the
spatial positions in the initial disease focus had become occupied
by diseased trees and that the increase in symptomatic plants
was occurring to and within secondary foci in the field. Therefore,
by maintaining as constant either the first date of comparison
(Fig. 5A and B) or the second date (Fig. 5C and D), information
about the time and relative locations of epidemiologically impor-
tant events was derived.

Attributes of the distance class matrices also revealed informa-
tion that potentially could be linked to the biology and ecology
of epidemic processes and suggested further hypotheses to be
tested. The long axes of the core and reflected clusters in the
papaya ringspot analysis (Fig. 5) were parallel to the direction
of agronomic rows. Thus, there was a greater probability of disease
increase within, rather than across, rows in this field, a phenom-
enon possibly attributable to closer between-tree spacing within
rows than across rows. No evidence for exchange of inoculum
between the two papaya fields was observed. Disease incidence
remained <1% in the adjacent field, and symptomatic plants were
not observed until many months after the initial disease focus
was observed in the planting of papaya used in the analysis (data
not shown). These data (in addition to the remoteness of the
location) suggest that the epidemic was being driven exclusively
by within-field increase of papaya ringspot. The spatial locations
of reflected clusters and discased plants by August indicated a
high probability of disease increase to plants relatively removed
from previously diseased plants. These data may reflect the feeding
behavior of the aphid vector(s). Papaya is not a preferred host
for the species of aphid vectors (S. A. Ferreira, personal communi-
cation). Thus, after probing diseased plants, the aphid vectors
likely were motivated to fly from infected plants to more distal
locations.

Spatiotemporal distance class analysis represents a potentially
important approach to the study of spatial pattern in plant disease
epidemiology. The method could be used as a comparative tool
to investigate disease increase and management by providing a
quantification of patterns resulting from management strategies
(e.g., roguing and vector disruption). The method may be applied
to any biological or physical system in which binary data are
relevant simplifications of the system.

Forms of data analysis, including the one described herein,
have inherent limitations, suggesting that a carefully selected
combination of techniques would optimize analytical power.
Spatiotemporal distance class analysis is largely a descriptive
method and thereby differs from mechanistic forms in intent and
application. Spatiotemporal distance class analysis is not intended
to identify models that can account for the evolution of observed
spatial patterns (unlike spatiotemporal autocorrelation analysis
[12,13]), nor is the analysis intended to provide an integrated,
simultaneous evaluation of an entire epidemic (unlike spatio-
temporal autocorrelation analysis). Rather, it is limited to specific
comparisons between disease assessment dates. Strictly speaking,
the use of spatiotemporal distance class analysis does not allow
attachment of a Type I error rate to assertions about pattern
development in space and time (unlike distribution fitting pro-
cedures, for example). The analysis may be more applicable at
an individual plant basis that at the level of a population in a
quadrat. The preceding limitations suggest the need to examine
spatiotemporal data from different perspectives.

The strengths and capabilities of spatiotemporal distance class
analysis lend credence to its use in an integrated approach to
disease data analysis. The conservative nature of the decision
criteria (e.g., the significance of SCF values) imitates that of more
formal statistical tests (e.g., ¢ tests and chi-square) and protects
against false conclusions. Spatiotemporal distance class analysis
conserves information on plant location. The method is inde-
pendent of quadrat size and shape relative to distribution-fitting
procedures, sparse sampling techniques, and some descriptive
statistics (e.g., indices of dispersion). Thus, experimental design
and data analysis are relatively independent of questions and
problems concerning optimum quadrat size and/or shape (1).
Incidence of disease is recorded for individuals as spatially distinct
units rather than for a population of individuals within spatially
distinct quadrats, thereby distinguishing the technique from forms
of quadrat data analysis. Spatiotemporal distance class analy-
sis has the potential to provide insight into pathogen and host
ecology. Determinants of pathosystem behavior may be reflected
in edge effects, cluster size and shape and direction and magnitude
of expansion, and the location and time of the establishment
of secondary foci. The method is self-contained and relatively
simple; i.e., no prior knowledge of the statistical theory of arguably
more complex concepts such as geostatistics or time-series analysis
is necessary. Finally, the analysis is not limited to consecutive
disease assessments. This allows a more flexible pattern analysis
to be conducted at different levels of temporal resolution (poten-
tially important if the disease latent period is unknown).
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