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ABSTRACT

Stein, A., Kocks, C. G., Zadoks, J. C., Frinking, H. D., Ruissen, M.
A., and Myers, D. E. 1994. A geostatistical analysis of the spatio-temporal
development of downy mildew epidemics in cabbage. Phytopathology
84:1227-1239.

Spatial and temporal data on disease incidence in an experimental
field of red cabbage in which a downy mildew epidemic developed from
a point source was analyzed by a geostatistical model. A two-step predic-
tion procedure was defined to formulate a linear predictor for space and
time variables based on a spatial semivariogram that changes in time.
The model accommodated any pattern of spatial variables, including

patterns of healthy and diseased plants. The spatial transposition of the
epidemic focus was determined with high precision. Time of initiation
of the epidemic was determined with lower precision due to extrapolation
in time. The results were compared with data from three other experimental
plots: one red cabbage plot from the previous year and two from the
same year. For epidemics in white cabbage plots, a single-point source
of the epidemic could not be identified. In fact, several small foci were
present in the white cabbage plots. Thus, the procedures presented in
this paper could distinguish between epidemics originating from a point
source and those having more than one source. Optimal sampling plans
based on a predetermined precision are proposed.

The downy mildew pathogen ( Peronospora parasitica Pers.:Fr.)
damages cabbage (Brassica oleracea L.), mainly attacking curds
and heads. The disease can cause serious problems when cabbage
seedlings are infected. P. parasitica is a biotrophic parasite that
is dispersed by conidia during the crop-growing season. It survives
unfavorable environments by oospores. Primary infections take
place close to ground level and are often sheltered within the
canopy. Secondary infections occur on higher leaf positions, and
inoculum can be dispersed over greater distances (29). The latency
period of the pathogen is approximately 7 days, depending on
the temperature. The length of the period is affected by climato-
logical conditions and is shortest at a canopy temperature of
16 C. In the present study, polycyclic development of the pathogen
on cabbage was observed in time and space.

© 1994 The American Phytopathological Society

Epidemic development in space and time share several proper-
ties. First, observations at one specific time point are related to
each other as well as to observations at earlier and later points.
Second, spatial variation is often dynamic. For epidemics develop-
ing in experimental plots, two remarks can be added: Observations
are usually abundantly available (e.g., 100 or 1,000) at each time
point, and observations on multiple, related variables may be
collected simultaneously. A statistical analysis of these data is
desirable, in view of the amount of data and the objectives of
the experiments. The sampling pattern may lack order and
regularity both in space and time. Previous research showed the
importance of analyzing the spatial distribution of pathogenic
fungi in enhancing the understanding of their ecology and epi-
demiology (2,6,10,30,37). Gradient-models (8), autocorrelation (7,17,
18,21,25), two-dimensional distance class analysis (23), Morisita’s
index of dispersion (31), and geostatistics (3,12,15,35) increasingly
have been used to deal with location-specific statistical inference.
These procedures, however, are too restrictive to be generally
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applicable to spatio-temporal data, because either the source has
to be known or stationarity or fixed semivariograms have to be
assumed. Theory to analyze spatio-temporal data has focused
on the development and use of practical space-time models (1,7,
16,18,21,25,26,28) and on a theoretical space-time framework in
relation to random fields (4).

This study deals with a dynamic spatial pattern of downy mildew
epidemics on cabbage. A two-step procedure was developed to
carry out predictions in space and time of a single variable, col-
lected according to an arbitrary sampling pattern. Emphasis is
given to a random function taking only the values 1 and 0, indi-
cating presence and absence of the disease (the disease status
of an individual plant).

Detailed data were available from field experiments carried
out during 1991 in the Netherlands. In this paper, attention is
focused on one red cabbage plot. The results were compared
by those from two white cabbage plots from 1991 and with one
red cabbage plot from a plot experiment carried out during 1990.
This study concerns analysis of P. parasitica in space and time
with five objectives: 1) modeling of the spatial pattern of disease
at any point in time, 2) prediction of disease at unobserved points
in time, 3) development of optimal sampling patterns for future
assessments, 4) determination of the source of the initial inoculum
in space and time, and 5) calculation of the expansion rate of
the disease.

MATERIALS AND METHODS

Plot establishment. Downy mildew epidemics were studied in
one cabbage plot in the Netherlands during 1990 and in three
cabbage plots during 1991. Host plants for P. parasitica were
B. oleracea cv. Vesta (red cabbage) in 1990 and in one plot in
1991 and B. oleracea cv. Stonar (white cabbage) in two plots
in 1991. The experimental plots were situated at Lienden (51.57" N
latitude, 5.31" E longitude). In 1990, the red cabbage plot (coded
as RC90), consisted of 40 X 40 plants in a 0.5-m’ grid. This
plot was planted on 15 May, with rows oriented in a northeasterly
direction. In 1991, all plots consisted of a 52 X 52 array of plants
in a 0.5-m? grid. The plots were planted on 22 May with rows
oriented in a northeasterly direction. The white cabbage plots,
coded as WCa and WCb, were situated southwest and southeast
from the red cabbage plot (coded as RC91), respectively. Plots
were separated by four rows of field beans (0.5 m wide).

Inoculum preparation. An isolate of P. parasitica originally
obtained from infected cabbage leaves was used in this study.
Inoculum was prepared by suspending 48-h-old spores in sterile
distilled water and adjusting the concentration to approximately
10° spores per milliliter. The inoculum was atomized onto the
foliage of cabbage until runoff. Inoculated plants were enclosed
in plastic boxes to maintain high humidity and free moisture
for approximately 24 h and placed in a growth chamber at 16 C,
with 16 h of light per day. Covers were removed, and symptoms
were allowed to develop for 7 days in a growth chamber before
the plants were planted in the plots. One inoculated plant was
placed in the center of each plot to act as a point focus of disease
within the plot, on 16 May 1990 and 29 May 1991. In 1991,
these plants were removed on 3 June. The sources in the two
white cabbage plots did not function. A natural infection, probably
caused by the nearby red cabbage plot, appeared in the white
cabbage plots.

Disease assessment. In RC90, all 1,600 plants were monitored
from 20 May to 21 August. Plants were scored weekly, as either
diseased or healthy. In RC91, only the central part consisting
of 2,400 plants was monitored until 22 July in WCa and until
11 June in WCb. Thereafter, only the central 1,936 plants were
monitored due to time restrictions. Two white cabbage plants
died. WCa and WCb were not monitored on 19 June because
the weather conditions were too bad. Temperature and relative
humidity were registered by a thermohygrograph, wind direction
and wind speed by a wind recorder, rain and leaf wetness by
a leaf wetness recorder. In the following analysis, attention was
focused on RC91, which was used to develop the statistical pro-
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cedures, whereas RC90, WCa, and WCb were used subsequently
to test the procedures.

Variability in space and time. Variables in space (§) and time
(T) are associated with their positions, s and ¢. It is common
to model the variability in space and time by means of a random
array or field, Z(s,¢). Let the distance in § and T be composed
of hgin § and A4 in T. Let the transpose of a vector be denoted
with a prime (‘). Although such a field can have many different
forms, it will be assumed throughout this study that it is stationary.
For stationary random fields the expectation, pg 5, is defined as
wsr = E[Z(s,1)] and is independent of any translation vector,
h=(hshy): E[Z(s + hs,t + hy)] = E[Z(s,1)]. Also, the covariance
function, defined as Cs y(h) = Cov[ Z(s + hg,t + hy),Z(s,1)], depends
solely on the lag vector, A, not on location and time. The intrinsic
hypothesis is a somewhat weaker assumption that sets require-
ments only on differences between variables at different locations,
Z(s + hgt + hyp) and Z(s,1), separated with distance h: E[Z(s
+ hgt + hy) — Z(s,0)] = 0 and Var[Z(s + hg,t + hy) — Z(s,1)]
depends solely on A. In this case, the variance of Z(s,#) need
not exist. Under the intrinsic hypothesis, the semivariogram, y(h)
= vysr(hshy), in S and Tis defined as

vs.r(hshy) = 1/2Var{[Z(s +hgt + hy) — Z(s.0)T}. (D

As has been shown previously (13), v(h) = C(0) — C(h). Through-
out this study, the semivariogram will be used instead of the
covariance function, because it is more general and is more reliable
for estimates from the available data.

Particular cases of equation 1 include 1) the spatial semivario-
gram g, (hg0), for a fixed time point, t;, depending only on
the Euc]igean distance, hg, between two locations in space and
2) the temporal semivariogram vy, (0,h7), for any fixed location
in space, g, depending only on the distance, Ay, in time:

Ysughs:0) = 1/ 2E{[Z(s + hsto) — Z(s,1)]} 2
and
i {0h7) = 1/ 2E{[Z(s0,t + h7) — Z(s0,0]'}- ®3)

The spatial semivariogram g, (hs0) depends on the distance
vector in space. Different semivariograms for different directions
may exist. In this case the spatial random function is called
anisotropic. The alternative to anisotropy is isotropy, implying
that (k) depends on the length r = |A| of k only, and not on
its direction. If the temporal semivariograms v, 1(0,h7) are
independent of the location, sy, an average temporal semivario-
gram, yr(hy), reducing to y¢(ry) in case of isotropy, is obtained
using the semivariograms for all locations as spatial replicates
and taking the expectation in equation 3 over the whole spatial
domain.

In practice, the semivariogram is unknown and must be
estimated from observations. Let observation times be denoted
by 1; € T,j = 1,..,k and the spatial observation locations at
by s; € S,i = 1,...,N;. The observations, denoted by z(s;;t;), are
considered realizations of a random field, Z(s;t;) (19,20). In a
two-dimensional space, S, s; = (5);,82;), where sy;; is the first
coordinate and s,; is the second coordinate along orthogonal
axes with respect to an arbitrary origin. The restriction to a two-
dimensional area is used only for this particular study. The sample
semivariogram as a function of r is computed by:

Nihs) Nihs)

: ! :
YO= 38 & % By thsyth) =z @F, @
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where z(s;;,4;) and z(s; + hst; + hy) is a pair of observations
with a spatial distance at f; approximately equal to hg, the total
number of such pairs being equal to N,(hg), and a temporal
distance approximately equal to Ay, the number of such pairs
being equal to N(hy). The total number of pairs with separation
distance equal to r equals N(r).



Using the values obtained, a semivariogram model, ¥(r), may
be fitted to facilitate the interpretation of patterns and to carry
out predictions (22). The semivariogram models are characterized
by two parameters: the sill, 4y, defined as the limiting value of
the semivariogram as distance / increases, and the range param-
eter, b, which is associated with the distance A at which the sill
is reached. The sill, and hence the range, do not necessarily exist.
If the sill exists, it is equal to the variance (14). When the range
parameter, b, approaches zero, the semivariogram reduces to a
constant, ¢, and is termed a pure nugget effect; the sill, 4, is
then equivalent to ¢,. In this case, the data are independent, and
the nugget effect, c,, appears as the (extrapolated) semivariogram
value at lag zero and measures nonspatial variation such as
assessment error, operator bias, and the spatial variation that
occurs at very short distances (i.e., for lag lengths smaller than
the smallest available distance between observations). Estimates
of the parameters ¢y, A, and b, may be obtained with any weighted
nonlinear regression procedure or by means of a restricted maxi-
mum likelihood procedure (33).

A permissible semivariogram model needs to be conditionally
nonnegative definite, Var(A\’Z) = —\'T'A = 0 for all A with A'1,
= 0, where I' is obtained by evaluating the semivariogram model
for the distances between the observation locations, 1, is a vector
of n elements, all equal to one, and Z is a vector containing
the Z(s;;t;). An example of a permissible semivariogram model
is the exponential model y,,,(r), defined as:

Yexp(r) = €o [1 = 8x(N] + Ay (1 — ™), (%)

where the Kronecker 8, 84(r), is 1 for r = 0 and vanishes elsewhere.

It is challenging to model the variability in space and time
by means of an anisotropic model. However, no natural distance
exists in S and T. Even use of y(r) = y(r,) with

) ) 2
= (=) £ (e (_’_T)

C \/(b) +(by) %, ©
with r,, r,, and r; the distances in the first and second spatial
directions and in time and b,, b,, and b the ranges of influences
in these directions, respectively, has as its main drawback that
b and b, are considered constant in time and that b;is considered
constant in space. In the current study, this will not be the case.
Therefore, the parameters of the semivariograms are obtained
for each time with sufficiently available observations (i.e., at least
100 observations), and hence, they are functions of time.

In this study, attention was given to disease status (presence
and absence). For such data, the semivariogram was well-defined:
equal to the probability that the variable changes as a function
of distance, h, between observation locations (13).

Two-step space-time kriging. One of the objectives of this study
is to predict the values at unvisited locations in space or points
in time, using linear combinations of data values. Kriging provides
an unbiased, minimum variance linear predictor based on the
spatial dependence modeled by means of the semivariogram
(5,32,36). The main issue to deal with is the prediction of the
value of Z, = Z(s,t,) for arbitrary s, and 1.

In this paper, we propose the use of two-step space-time kriging
(2STK). This predictor is a linear combination of k predictors
in space. In the first step, the predictors, Z(s0,1;) = ZNyZ(si;,1),
of the value of Z(s,t) at ,j = 1,..k are determined. The
predictors are linear in the observations, Z(s;,z), s = 1,...,N,.
The kriging weights, A;;, associated with each observation are
determined such that the kriging variance, o}, defined as o} =
Var[Z(so,t)) — Z(s,1,)], is minimal, yielding the kriging predictor
as the best linear unbiased predictor. The vector of kriging weights,
A;, is given by

=T (v + wly), Q)

where I' is the matrix containing the semivariogram values
between the observation locations, v, is the vector containing

the semivariogram values between the observation locations and
the prediction location, and w = (1 — 1,'T""y,)/(1,,T'1,). The
weights decrease as the distance increases between the prediction
location and the observation locations. If anisotropy is en-
countered, the weights decrease fastest in the direction with the
shortest range.

In the second step, the value of Z, = Z(s,,1) is predicted, using
a linear combination of the predictors Z(sg,;)j = 1,...,k. The
best linear unbiased predictor, Z,, among all predictors with
multiplicative weights is defined as:

k Ny
6,2 (50, )= 2, 2, 0N, Z (sipt), (8)

1 =1 i=l

M=

20=

7

]

in which 6 is a vector of kriging weights. Evaluation of equation 8
in a general setting is possible only if an assumption concerning
stationarity in the space-time domain is made. For example, if
the intrinsic hypothesis is valid in the time dimension, the average
temporal semivariogram could be used. In this study, the changes
through time are modeled by means of a polynomial trend, and
the observations at different times are considered to be inde-
pendent of each other. The degree of the trend, », has to be
lower than the number of sampling days, k, otherwise singularity
is encountered. Therefore, if k =2, » = 1, and k = 3, the degree
of the polynomial trend was set equal to two. The vector of kriging
weights, 0, for v = 2 is similar to the vector of regression weights
given by

0 = Xu(X; X) " xo, ©)

where X is a matrix of size k X 3 with as its j™ row (1,413,
and xo is a vector equal to (1,4,15)". If v = 1, the two kriging
weights are equal to

0=[(ty— )/ (ty — 1)), 0 = [(t, — 1)/ () — )], (10)

whereas for » = 0, the kriging weight equals one. The kriging
variance, equal to the prediction error variance, is given by

val(U— Zp) = a5+ 6} - ol + ... + 6} - 0}, (11)

where o] is the kriging variance at 1,(j = 1,....k) and o} is the
variance at 7. An estimate for of may be obtained as the sum
of nugget effect and sill obtained from the semivariogram
parameters estimated at {, by means of modeling the change of
the nugget effect and the sill value on time as a low-order
polynomial or spline.

The predictor Z; explicitly uses spatial semivariograms that
change over the course of time. As can be shown by standard
methods, the predictor Z, is an exact predictor (i.e., in observation
locations the observed values are themselves predicted, and the
kriging variance is equal to zero). In the case of disease prediction,
the predicted values need to be rounded to one if they exceed
0.5 and to zero otherwise.

The 2STK predictor Z, was compared in this study with two
other interpolation procedures: first with general anisotropic
space-time kriging (ASTK), using the anisotropic semivariogram
(equation 6) and second temporal kriging (TK) was applied,
assuming the intrinsic hypothesis to hold in time, allowing the
use of the temporal semivariogram. Comparisons were made by
suppressing, in turn, all observations at each time point 4,j=
l,...,k and predicting them using the other observations. The mean
of the squared errors (MSE) between predictions and observations
was determined, as well as the fraction of the correctly predicted
fraction of disease status.

Some related problems. To determine the source of inoculum
in space and time as well as the expansion rate, the variable
To(s) = To(s1,s7) is defined for each location, s = (s,5,), as the
last observation time at which the plant at that location was
healthy. The origin of the initial inoculum and the expansion
rate of the epidemic in space and time are determined by fitting
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an appropriate model through the observed Tpy(s) values. In this
study, the empirically derived nonlinear regression equation

To(s1,52) = ag + bol(s) — 1)’ + gls2 — p2)’1" (12)

is proposed, with unknown parameters ao, bo, M1, M2, & and a.
Estimates of the parameters were obtained with nonlinear
regression. The spatial origin is given by the coordinate vector
(u1,112), the temporal origin by a,, the expansion rate by the
parameters by and «, whereas parameter g measures any form
of anisotropy in space.

Optimal sampling in space and time depends both on the
intensity of spatial sampling and on the number of sampling days.

In this study, sampling is termed optimal if the kriging variance
at the most uncertain locations in space as averaged over the
unsampled days, 0,4,., is minimized. The o}, and thus o’ are
independent of the actual observations. The most uncertain
locations are those with coordinates in the center of neighboring
observations. In this study, a neighborhood of size four was
applied. A comparison with larger neighborhoods of sizes eight,
12, and 20 did not show substantial differences, although o 4.’
values were somewhat smaller for those. Because the total number
of calculations becomes intractably large (to find the average value
for 10 sampling days within a 70-day study period requires the
calculation of almost 10% kriging variances), we determined an
approximate optimum by minimizing 04 for 500 randomly

TABLE 1. Disease incidence and estimated spatial semivariogram parameters for the exponential model at different days

Plot No. of Disease Nugget sill Ruugs Relative
Date Day plants incidence (o) (A b b, b, nugget
RCII*
6/5 0 2,400 0.07 0.05 0.04 12.81 9.69 17.94 0.52
6/10 5 2,400 0.20 0.09 0.13 10.33 7.33 26.37 0.41
6/18 13 2,400 0.50 0.16 0.13 12.82 9.37 28.64 0.56
6/25 20 2,400 0.63 0.17 0.14 33.91 20.87 202.65 0.56
7/1 26 2,400 0.96 0.04 0.01 2,03 . 1.43 0.86
7/8 33 2,400 0.97 0.02 0.00 S e s 1.00
7/15 40 2,400 0.93 0.04 0.03 0.87 0.84 0.91 0.59
7/22 47 2,400 0.94 0.04 0.02 0.77 0.55 1.04 0.69
7/29 54 1,934 0.97 0.03 i 0.83 i o 1.00
8/5 61 1,934 0.69 0.18 0.03 0.96 0.42 20.29 0.85
8/12 68 1,934 0.49 0.22 0.03 4.00 1.25 6.96 0.89
RC90"
5/23 0 1,600 * * 1.00
5/30 7 1,600 0.01 0.01 0.01 19.32 9.60 227.62 0.36
6/7 15 1,600 0.02 0.02 0.02 5.58 5.00 6.52 0.44
6/11 19 1,600 0.11 0.05 0.09 7.38 6.39 9.16 0.38
6/19 27 1,600 0.57 0.16 * & *
6/26 34 1,600 0.89 0.06 e . . ¥ e
7/3 41 1,600 0.99 0.00 0.01 0.02 0.24 0.02 0.00
7/10 48 1,600 1.00 0.00 * 0.02 0.03 0.02 0.00
FAT 55 1,600 1.00 0.00 * 0.02 0.03 0.02 0.00
7/24 62 1,600 1.00 0.00 * 0.02 0.05 0.01 0.00
7/31 69 1,600 0.96 0.00 0.03 0.02 0.34 0.02 *
8/7 76 1,600 0.74 0.18 0.01 2.03 1.83 1.59 0.94
8/14 83 1,600 0.47 0.23 0.02 9.91 5.12 21.35 0.92
WcCa'
6/5 0 2,400 0.01 0.01 * 0.00 0.03 o 0.93
6/11 6 2,399 0.01 b * 0.04 0.04 0.03 0.91
6/26 21 1,934 0.02 0.00 0.01 0.02 0.03 0.03 0.00
7/2 27 1,934 0.19 0.13 0.02 11.92 26.90 8.40 0.84
719 34 1,934 0.31 0.11 0.11 10.02 8.30 12.08 0.48
7/16 41 1,934 0.26 0.11 0.08 7.37 4.30 14.73 0.55
7/23 48 1,933 0.53 0.11 0.15 4.46 3.27 5.78 0.43
7/29 54 1,933 0.70 0.13 0.09 3.73 2.97 4.47 0.57
8/6 62 1,933 0.96 0.04 0.01 1.10 1.24 0.93 0.84
8/13 69 1,933 0.94 0.05 * 0.22 1.00 0.16 0.96
WCb!
6/5 0 2,400 0.01 0.00 0.01 0.33 0.36 . 1.00
6/11 6 2,399 0.03 0.00 0.03 0.03 0.02 0.03 1.00
6/26 21 1,935 0.16 0.11 1.00
7/2 27 1,935 0.73 0.01 0.11 6.99 13.41 341 0.84
7/9 34 1,935 0.66 0.05 0.18 4.23 7.23 2.47 0.48
7/16 41 1,933 0.67 0.07 0.17 4.51 8.49 2.31 0.55
7/23 48 1,933 0.89 0.06 0.05 3.03 3.21 2.81 0.43
7/29 54 1,933 0.83 0.04 s 0.01 * 0.01 s
8/6 62 1,933 0.83 0.13 0.01 .77 0.93 4 0.84
8/13 69 1,933 0.73 0.18 0.02 7.38 4.51 st 0.96

*The value of the semivariogram near the origin.
®The limiting value of the semivariogram for large distances, h.

The range for the semivariogram. Parameters b, and b, give the slope of the linear model in the x and y directions.

9Relative nugget is the ratio between ¢g and A.

RC91, downy mildew in red cabbage during 1991.

"No data available.

B+ = <0.01.

"RC90, downy mildew in red cabbage during 1990.

' WCa, downy mildew in white cabbage during 1991, plot a.
1 WCb, downy mildew in white cabbage during 1991, plot b.
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positioned location X times for the total number of time points
equal to k = 3,...,15. First, from a set of 500 randomly selected
triplets the three samplingzdays with lowest o 4,.” were determined.
Next, the minimum o4, value was determined in a set of 500
randomly selected groups of four sampling days, etc. The
procedure was finished if ¢,,,” was reduced to a value that was
acceptable for the practical purpose.

RESULTS

Incidence and spatial variability in time. On the first observation
date, 5 June, the red cabbage crop was already infected (disease
incidence = 0.07) (Table 1). In view of the latency period of
approximately 7 days, this infection was probably caused by an
early infection in the seedbed. During the next 4 wk, disease
incidence increased to a level around 0.95 (29 July), followed
by a gradual decrease to 0.5 on 12 August. The patterns of infection
in RCI1 at different time points are shown in Figure 1. Disease
incidence was high near the source, and declined with distance
from the source. The spatial pattern of diseased plants was not
stationary over time. Estimated parameters of the spatial
semivariograms are shown in Table 1. The spatial semivariograms
obtained for the period from 5 to 25 June indicated that an
exgoncntial model adequately fitted the semivariogram values
(R?>0.95 and df = 23; Fig. 2).

The small relative nugget for this period indicated strong spatial
dependence with limited random variation. The nugget effect,

5 June

o 10 20 30 40 50 Q 10 20 30 40 50

¢g, was high on I8 and 25 June, associated with high sill values
on 10, 18, and 25 June and a high value of the range on 25
June. This was the result of favorable weather conditions during
June (10-15 C, rain, and high relative humidity in combination
with long periods of leaf wetness), which stimulated a rapid disease
spread resulting in increased spatial dependence.

Direction from the source had a significant effect on disease
incidence, as confirmed by the semivariograms that were highly
anisotropic, with an anisotropy ratio (b,/b,) from 1.85 to nearly
10 at 25 June (Table 1, ranges b, and b,). These data showed
that disease spread mainly along the southwest-northeast
diagonal. The prevailing wind directions during June were west
and southwest. Spatial variability dropped on 1 July and remained
low during the five following weeks, because the plot was nearly
completely diseased. The semivariograms were flat, showing a
pure nugget effect and absence of spatial dependency (Fig. 2).
On 15 July, a well-structured model with a small range (four
plants) was observed and disappeared on 22 July. On 5 and 12
August, the spatial variability increased. Distribution of healthy
plants was random on 5 August, because defoliation by loss of
older leaves led to a decline in disease incidence during the last
weeks of the experiment, and new infections did not occur because
the weather was often dry and warm (frequently above 30 C).
Spatial dependence returned on 12 August, showing a clustering
of recovered plants. The relative nugget effect (Table 1) was above
0.4 during all weeks, indicating substantial nonspatial variation
compared to the spatial variation.

18 June

25 June

Fig. 1. The positions of the diseased and healthy plants at different points in time for downy mildew in red cabbage during 1991.
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Differences (and their squares) between observations increased
as a function of the time interval. The temporal semivariogram,
vy7(rp), is shown in Table 2. The temporal variability increased
until the time interval was 7 wk. For larger time intervals, the
temporal variability decreased as a result of decrease of disease
incidence. The temporal semivariogram values were high (Table
2, v¢(ry) values) compared to those of the spatial semivariograms
(Table 1, sill values) caused by larger changes in time than at
any particular day in space. The anisotropic space-time
semivariogram confirmed this and showed ranges of influence
in the x and y direction and in time equal to b, = 125, b, =
137, and b= 4.77, respectively.

Space-time kriging. The MSE for the predictions obtained with
TK, ASTK, and 2STK at different days are shown in Table 3.
The infection was not homogeneous throughout the plot, and
the wind-exposed south and southwest borders had a lower disease
incidence than other borders. This anisotropy was considered in
space-time kriging. The obtained pattern, although reproducing
the average disease incidence, underestimated the random varia-
tion, as could be expected from smoothing by the 2STK inter-
polator. In such cases, the variability was due partly to estimation
of relatively rare cases of either healthy or diseased individuals.
This underestimation was observed for all kriging procedures
(Table 3).

The ASTK and 2STK procedures showed the lowest MSE
values; the MSE value for TK was much higher. The TK procedure
seemed to be less suitable than the ASTK and 2STK procedures,
because the predicted fraction of infected plants was far from

the actual values on 1 and 29 July and 5 August. On 25 June
and later, space-time kriging allowed a good reconstruction of
the observed mapping. The predictions of disease incidence
obtained with the ASTK and 2STK procedures were close to
the actual disease incidence, corresponding to low MSE values,
because most plants were infected. Prediction of the disease inci-
dence on 25 June, when the semivariogram had a large range
and the variability was much higher than | wk later, and prediction
on 5 and 12 August resulted in larger MSE values. On most
time points, especially during the period of near-total infection,
the MSE values were lowest for ASTK. This anisotropy was
considered in the space-time kriging that resulted in low MSE
values during the period of epidemic growth and decline (the
spatial pattern was highly anisotropic). Kriging with ASTK under-
estimated disease incidence, especially on 18 June, whereas 2STK
performed worst on 10 June (Table 4). The fraction of correctly
predicted values for healthy plants was below 0.4 during the period
after 25 June. Higher values were obtained for these fractions
with 2STK, showing that this procedure performed better when
predicting a rare event (i.e., that a plant is healthy during a period
with incidence above 0.9). With disease incidence below 0.9, the
fraction of correctly predicted values for infected plants was above
0.9, expected for 10 June.

Initial focus and expansion rate. A graphic display of the expan-
sion rate is given in Figure 3. Estimation of the model parameters
for Ty(s) resulted in the most likely spatial origin of the disease
(1,112) with coordinates (25.31 +0.25,24.76 = 0.60). This reference
point was not significantly different from the actual inoculation
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Fig. 2. The spatial semivariograms for downy mildew in red cabbage during 1991 at different points in time. Exponential semivariogram models
show a clear spatial structure until 25 June and are close to a pure nugget effect afterward, with spatial structure returning at 12 August.
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point (25,25), which was contained within the 95% confidence
limits. The differences in the standard deviations were due to
the anisotropy. The temporal origin (parameter a,) was estimated
to be —1.7 £ 1.7 days, implying that the symptom expression
started after 3 June. Considering the latency period of 7 days,
the epidemic started approximately 9 days before 5 June (on
27 May). This time point was 2 days before artificial inoculation
(29 May) and 5 days after planting (22 May). The estimate used
the last observation date at which the plant was healthy. Changing
to the first observation date at which a plant is diseased would
postpone the temporal origin by approximately 1 wk, supporting
the conclusion that the disease originated during the week
following 27 May.

Parameters b, and « were estimated to be 1.22 + 0.62 and
0.42 £ 0.07, respectively. Therefore, the expansion rate, measured
in days from the first observation day and modeled by Ty(s),
followed the power model, 1.22/4|"*, with |k| as the average
distance from the source. The anisotropy in space expressed by
parameter g, equal to 0.32, showed that the spread in the y
direction (southwest-northeast) proceeded faster than in the x

TABLE 2. The estimated temporal semivariograms for the incidence of
diseased cabbage plants in four plots

Plot No. of
Date pairs yr(rp*
RC91®
6/10 22,602 0.11
6/18 20,202 0.16
6/25 17,802 0.21
7/1 15,402 0.26
7/8 13,002 0.29
7/15 10,602 0.31
7/22 8,202 0.33
7/29 5,802 0.33
8/5 3,868 0.28
8/12 1,934 0.24
WcCa*
6/10 17,868 0.09
6/18 15,469 0.15
6/25 13,536 0.20
7/1 11,602 0.25
7/8 9,667 0.29
7/15 7,733 0.37
7/22 5,800 0.43
7/29 3,866 0.47
8/5 1,933 0.46
wChb*
6/10 17,868 0.15
6/18 15,469 0.20
6/25 13,536 0.23
/1 11,602 0.28
7/8 9,667 0.27
7/15 7,733 0.30
7/22 5,800 0.31
7/29 3,866 0.38
8/5 1,933 0.36
RC90¢
30/5 19,200 0.07
7/6 17,600 0.13
/6 16,000 0.19
19/6 14,400 0.26
26/6 12,800 0.32
3/7 11,200 0.35
10/7 9,600 0.36
17/7 8,000 0.41
24/7 6,400 0.39
31/8 4,800 0.36
7/8 3,200 0.30
14/8 1,600 0.23

*Estimated temporal semivariogram values.

"RCI1, downy mildew in red cabbage during 1991.

“WCa, downy mildew in white cabbage during 1991, plot a.
“WCb, downy mildew in white cabbage during 1991, plot b.
“RCY0, downy mildew in red cabbage during 1990,

direction (southeast-northwest), as confirmed by visual inspection
of Figure 1.

Optimal sampling. An efficient way of mapping the spatial
pattern, based on a sample of limited size but able to construct
the main characteristics of disease distribution, would be a useful
tool. In this experiment, we studied the effect of reducing the
number of observations at any observation day by increasing
the sampling distance from one to seven plants, reducing the
number of observations by up to 98%. The resulting 49
observations is the minimum number needed to estimate the
semivariogram. The original o 4,,’ value increased from 0.367 to
0.374, showing that this reduction can be applied without seriously
affecting the quality of the predictions. The same procedure was
carried out for the temg)oral pattern, reducing the number of
sampling days. The o,,,* value as a function of the number of
sampling days, N, is given by the equation

O ave’ = 0.264 + 0.620/ Ny, R? = 0.85. (13)

The required precision dictates the number of sampling days.
Optimal sampling plans are given in Figure 4. If plants are to
be assessed at three points in time, the first assessment should
be made at the start of the sampling period, the second one on
approximately day 29 (when nearly all plants became infected),
and the third at day 54, the day that recovery began. A similar
schedule may be followed if more observation dates are taken.
Evaluating the actual schedule, we noticed that the o4, value
could be reduced from 0.367 to 0.348 by more carefully allocating
the 11 observations: six observations to the period of spread,
three observations to the recovery period, and two to the period
of complete infection. It is especially important to assess plants
during the last week and the first four weeks,

Comparison between RC91 and WCa and WCb. The epidemic
in WCa proceeded much slower than in RC91 (Table 1). Disease
incidence was low until 11 June. Afterward, it increased and
reached its maximum, equal to 0.96, on 6 August. The proportion
of diseased plants for the epidemic in WCb developed to a disease
incidence of 0.73 on 2 July, after which disease incidence fluctuated
between 0.66 and 0.89. The highest disease incidence was reached
on 23 July. It was of interest to determine how efficiently kriging
reproduces the spatial pattern of spread. The pattern of spread
in WCa and WCb, although showing the greatest disease incidence
in the direction of the wind (southwest-northeast), differed from
that observed in RC91. Likewise the spatial semivariograms were
different, expressing anisotropy first with preferential direction
in the x direction (southeast-southwest), later in the » direction
(southwest-northeast) for WCa. For WCb, the semivariograms
expressed anisotropy with preference for the x direction (south-
east-northwest) (Table 1). The temporal semivariogram attained
higher values than with RC91, probably caused by generally larger
differences between observations on successive assessment days
in white cabbage (Table 2). The predictions of disease incidence
for WCa were generally better and for WCb generally worse than
those for RC91 (total MSE 0.139 and 0.234 as compared to 0.184)
(Table 3). The fractions of actual and predicted infected plants
are shown in Table 5.

Space-time kriging underestimated disease incidence and thus
the spatial pattern of the epidemic (WCa). The model correctly
predicted diseased and healthy plants for RC91 during the period
of nearly complete infection of the plot (around 0.9) (Table 4).
For WCb, space-time kriging estimated disease incidence with
high precision. Problems arose with the estimation of parameters
describing the source and the expansion rate, modeled by means
of Ty(s). The origin in time (a,) was determined to be 18 (both
WCa and WCb), implying that symptom expression began on
23 June. The epidemic would have started on approximately 16
June. This disagreement is probably not caused by underestima-
tion of disease incidence with space-time kriging, because for WCb
disease incidence was predicted with high precision. The origin
in space was difficult to obtain for both WCa and WCb, because
it was evidently outside the plot. The SAS procedure NLIN (SAS
Institute, Cary, NC) failed to converge for u,, whereas [y was
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48, on the border of the plot. Because the other parameters (a, period, and the other observations between days 25 and 60 (i.e.,

by, and g) are associated with the coordinates of the origin, they 75% of the observations within 51% of the time period).
did not converge. Modeling a,,,” as a function of the number Comparison between RC91 and RC90. The epidemic in RC90
of sampling days was successful for WCb (15) but less successful proceeded until a maximum disease incidence was reached on
for WCa (14): 3 July (Table 1). After 24 July, the disease incidence declined.
The disease progress curve was more regular than in 1991. The
040 = 0.086 + 0.164/ Ny,y; R*=0.47 (14)  spatial pattern of spread for RC90 showed a clear and well-
structured focus development. The long axis of the focus that
and developed in the direction of the prevailing wind (southwest-
northeast) also was indicated with the spatial semivariograms
O ave = 0.120 + 0.294/ Ny,y,i; R* = 0.99. (15) (anisotropy in the y direction, southeast-northwest) (Table 1).
The temporal semivariogram attained larger values, caused by
The modeling for WCa was less successful because the distribution larger differences between time points (Table 2). The predictions
of the disease was scattered and the pattern of diseased plants in 1990 (total MSE 0.115) were more precise than in 1991 (0.184)
was rather anisotropic. The optimal sampling plan for WCa was (Table 3). Space-time kriging estimated disease incidence with
different from the one for RC91, with a single observation at high precision (Table 5). The prediction of the diseased and healthy
the start of the period, a single observation at the end of the plants was highly precise in 1990 and less precise in 1991.

TABLE 3. Mean squared error values for the three space-time kriging procedures: temporal (TK), anisotropic (ASTK), two-step (2STK)

RC90 WCa WCb’
a
Time RCO9I Time Time Time
(days) TK ASTK 2STK (days) 2STK (days) 2STK (days) 2STK
0 0.154 0.115 0.149 0 0.006 0 0.017 0 0.032
5 0.154 0.208 0.155 7 0.012 6 0.017 6 0.033
13 0.280 0.309 0.280 15 0.084 NA® NA NA NA
20 0.281 0.356 0.362 19 0.271 21 0.110 21 0.485
26 0.308 0.063 0.071 27 0.383 27 0.195 28 0.195
33 0.053 0.031 0.042 34 0.105 34 0.174 35 0.147
40 0.078 0.070 0.074 4] 0.008 41 0.192 41 0.158
47 0.071 0.057 0.059 48 0.003 48 0.284 49 0.227
54 0.150 0.039 0.052 55 0.001 54 0.293 54 0.530
61 0.324 0.319 0.407 62 0.004 62 0.078 64 0.285
68 0.445 0.467 0.442 69 0.056 69 0.092 71 0.349
76 0.243
83 0.325
Total 0.209 0.180 0.184 0.115 0.139 0.234

"RC91, downy mildew in red cabbage during 1991.

"RC90, downy mildew in red cabbage during 1990.

“WCa, downy mildew in white cabbage during 1991, plot a.
dWCb, downy mildew in white cabbage during 1991, plot b.
“Not available.

TABLE 4. Measured and predicted fraction of diseased plants and predicted fraction of actual diseased and healthy plants by means of three
prediction procedures—temporal kriging (TK), anisotropic space-time kriging (ASTK), and two-step space-time kriging (2STK)—for epidemic of
downy mildew in red cabbage 1991 (RC91)

Time Fraction disease Fraction correctly predicted
(day) Actual TK ASTK 2STK TK ASTK 2STK
0 0.07 0.20 0.04 0.05 inf? 0.88 0.56 0.78
n-i 0.84 0.91 0.86
5 0.20 0.07 0.12 0.06 inf 0.28 0.60 0.28
n-i 0.99 0.84 0.99
13 0.50 0.62 0.24 0.42 inf 0.84 0.48 0.84
n-i 0.60 0.90 0.60
20 0.63 0.52 0.62 0.60 inf 0.69 0.99 0.97
n-i 0.76 0.07 0.09
26 0.96 0.71 0.93 0.92 inf 0.71 0.98 0.96
n-i 0.36 0.10 0.22
33 0.97 0.96 0.97 0.95 inf 0.97 1.00 0.98
n-i 0.33 0.08 0.18
40 0.93 0.98 0.93 0.92 inf 0.98 1.00 0.99
n-i 0.09 0.01 0.08
47 0.94 0.97 0.94 0.94 inf 0.98 1.00 0.99
n-i 0.11 0.00 0.07
54 0.97 0.86 0.96 0.94 inf 0.87 0.99 0.97
n-i 0.30 0.03 0.17
61 0.69 0.93 0.66 0.49 inf 0.94 0.97 0.71
n-i 0.10 0.06 0.33
68 0.49 0.69 0.44 0.35 inf 0.75 0.92 0.73
n-i 0.37 0.17 0.40

“inf: based on number of visibly diseased plants; n-i: based on number of healthy, i.e, not visibly diseased, plants.
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Estimation of the model parameters for Ty(s) resulted in the
most likely spatial origin of the disease (u;,u5) with coordinates
(14.95 £ 0.40,13.74 £ 0.56), which differed significantly, as
indicated by the values of the standard deviations, from the
intended source (20,20). The temporal origin (parameter a,) was
estimated to be 14.15 £ 0.91 day, meaning that the first symptoms
were estimated to appear on 29 May. Taking the latency period
of 7 days into account, the epidemic would have started on 22
May (7 days after artificial inoculation), a good estimate.
Parameters b, and « were estimated to be 0.55 £ 0.25 and 0.50
=+ 0.06, respectively. Therefore, the expansion rate, measured in
days from the first observation day and modeled by T;(s), followed
the power model 0.55 [#|®*, with |A| as the average distance from
the source. The anisotropy in space (parameter g) was 0.71.
Modeling o,4,,” as a function of the number of sampling days
was unsuccessful:

(16)

O ave = 0.071 + 0.039/ Ny,,; R* = 0.45,

as shown by the low R? value.
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DISCUSSION

Examination of space-time analysis with RC91. Spatial varia-
tion is a property of natural populations, and it is often dynamic.
Accordingly, the pattern of downy mildew changed as disease
incidence increased or decreased during the course of the epidemic.
The spatial pattern of the epidemic in RC91 changed in time
as the disease incidence increased. The decline of disease incidence
was due to natural death of infected plant parts in combination
with climatologic conditions unfavorable to disease progress. At
the beginning of the epidemic, a random pattern of diseased plants
appeared, whereas at the end of the epidemic a random distribu-
tion of healthy plants was observed. During the progress of the
epidemic, the spatial dependence between observation points
increased as spatial distance decreased. There was evidence for
spatial nonstationarity when the spatial dependency was deter-
mined at individual time points. This means that, at any given
time, t, expected incidence level depended on location in the plot.
Quantitative analysis of spatial semivariograms indicated a disease
gradient during June 1991 in the direction southwest-northeast,
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Fig. 3. The expansion rate, Ty(s),s;), of the epidemic is expressed for each plant as the number of days between the first observation day and
the last day that the plant was observed healthy, as a function of the grid coordinates s; and s, for the four cabbage plots: red cabbage 1990

(RC90) and 1991 (RC91); white cabbage plots a (WCa) and b (WCb) 1991.
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corresponding with the prevailing wind direction (southwest-
west). This nonstationarity was analyzed with the semivariograms.
Considering all observation times, there was strong evidence for
spatial and temporal nonstationarity, indicating that expected
disease status depended on the location in space and time. With
these patterns, the prediction of rare events suffered from relatively
large errors. This problem should be addressed in future studies.
The spread of the pathogen in RC91, expressed by the function
To(s), followed the power model 1.22/A|°*. This function was
useful in determining the spatial and temporal origin of the disease.
Extrapolation of this function toward the edges of the plot, how-
ever, was quite unrealistic. For such purposes, the function needs
to be refined, because it should have a vertical asymptote toward
larger distances between spatial points. Larger distances, between
a source and healthy plants, should result in a longer time period
before a healthy plant becomes infected.

Comparison among RC91, RC90, WCa, and WCb. The com-
parison of plot RC91 with RC90, WCa, and WCb showed the
capacity of the model presented in this paper to identify the sources
of disease in space and time. It showed that the Ty(s) variable
can distinguish between a disease pattern induced by multiple
sources and a pattern induced by a point source. If infection
is caused by a point source, its location can be determined with
high precision, whereas the Ty(s) variable does not converge if
disease is caused by a multiple source.

Space-time kriging analysis was used to identify a model that
would account for temporal and spatial observations. The analysis
suggested that observed spatial patterns were related to temporal
nonstationarity. The 2STK analysis illustrated the development
of patterns over time but provided no information on the mecha-
nisms that accounted for this development. Also, 2STK predicted
disease progress, but implications of the 2STK model structure
were difficult to visualize because the prediction of diseased and
nondiseased plants was unsuccessful (Table 4). The 2STK pre-
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dictor is attractive, because it deals with changing semivariograms
over the course of time. However, the 2STK technique should
be refined. It is strange that within the same year, the disease
incidence was predicted with high and low precision (underesti-
mation) for WCa and WCb, respectively. Although other pre-
dictors in space and time also may give low MSE values (Table 3),
they lack the basic property of dealing with changing spatial
variability. Modeling the changes in time by means of a polynomial
trend could be further refined, but some assumptions concerning
stationarity in the time domain are required.

At the beginning of these analyses we had hoped to be able
to define an appropriate sampling scheme for spatial and temporal
sampling by examining dependencies in disease incidence in space
and time. Unfortunately, the specification derived from the
prescribed technique was less than optimal with respect to the
temporal analysis. Modeling of 0 ,,,” as a function of the number
of sampling days was less successful for RC90 and WCa. It appears
that this approach partially failed (WCb and RC90) as a con-
sequence of aggregation in disease incidence data, anisotropy,
temporal nonstationarity, and interacting foci. Problems arose
when estimating the spatial origin for WCa and WCb. An ex-
planation might be that the actual sources were located outside
the plots and that the artificial inoculations failed. The fact that
the disease probably came from outside the plot could explain
the change in anisotropy, because on 3 July the pathogen could
not spread further in the x direction, and hence anisotropy in
the y direction was observed (WCa). However, in that case, the
epidemics of 1991 would all have been initiated from sources
outside the plots. It is unrealistic to state that both WCa and
WCb were infected by downy mildew from RC91. In that case,
the disease would have spread against and perpendicular to the
prevailing wind direction. We did not search for sources outside
the plots. A better explanation is that the infected plants were
distributed randomly over the plot (WCa and WCb) from 5 until
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Fig. 4. Optimal sampling plans as a function of the number of observations for downy mildew in red cabbage during 1991 (RC91) and for downy
mildew in white cabbage plot a (WCa) during 1991. Every black block represents an observation day.
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26 June, a period during which disease incidence was below 0.02
and that some of the infected plants acted as sources of inoculum
and developed as single foci. The calculations were based on the
hypothesis of a single focus, and thus, problems may arise when
more than one focus is active. For RC90, the extrapolated spatial
and temporal origins differed from the actual origins. According
to the analysis, the first symptoms could be seen on 29 May,
atime point at which a clear elliptical focus had already developed.
The long axis of the developing focus ran parallel to the prevailing
winds (southwest-northeast) and had its own central point. Ex-
trapolation in time of the spatial source is based on the configura-
tion of the disease incidence values within the plot and can be
erroneous. Because we are dealing with the disease status of
individuals, 2STK cannot distinguish between plants with high
and low severity values.

The case study presented in this paper focuses on the use of
space-time data analysis for downy mildew in cabbage in four
situations only. Data of more growing seasons and other patho-
systems will be necessary to further evaluate the described
approach. In the present study, we dealt with incidence values.
Severity values also can be used but should be tested first to
get more insight into the strength of the analysis. Some further
refinements could be included to better describe the spatio-
temporal development of the disease. For example, the epidemic
process has a cause-and-effect relationship. That is, the pattern
of disease at #, is caused by the pattern of disease at 1, if 1,
< 1, whereas the model applied in this study measures the linear
relationships between the observations only at ¢, and f,. This
limitation is not considered a major drawback, because modeling
and interpreting spatial variability may yield sufficient insight

for many practical purposes. However, this model can be extended
to include a Box-Jenkins type of study (18) in the time domain,
though it will usually need more data and special assumptions.

The usefulness of the analysis is not limited to phytopathology.
Many agricultural and environmental phenomena exhibit similar
spatial patterns of development over the course of time. For
example, the distribution of a pollutant in a homogeneous
medium, the changes in groundwater levels in an aquifer, or the
changing patterns on successive satellite imagery. Analyses in the
space-time domain have been carried out to serve a broad range
of purposes, for example to determine a rainfall network (26),
to analyze piezometric readings (27), to analyze the effects of
sulphate deposition (1), to assess Ireland’s wind power resource
(9), and to determine the nature of periodontal disease progression
(34). Space-time analyses as discussed in this paper may have
a future in plant disease epidemiology.

APPENDIX

Geostatistical glossary. The geostatistical glossary explains
terms from the text (11,24). The interested reader is referred to
Isaaks and Srivastava (11) and Olea (24) for fuller explanations.
Throughout the glossary, we consider a regionalized variable,
Z(x), where x takes values in a spatial domain, S, and Z represents
the spatially varying properties. At one single location, x;, the
regionalized variable, Z(x;), may be observed, showing a univariate
distribution. An observation made at this location is denoted
with z(x;). If one considers the regionalized variables at two differ-
ent locations, a bivariate distribution is encountered.

TABLE 5. Measured and predicted fraction of visibly diseased plants and predicted fraction of actually diseased and healthy plants by means
of the two-step space-time kriging (2STK)—of downy mildew epidemics in red cabbage 1990 (RC90) and white cabbage 1991 (WCa and WCb)

Fraction diseased

RC90 WCa WCb

Time Actual Pred® Time Actual Pred Time Actual Pred

0 0.00 0.00 0 0.01 0.00 0 0.01 0.01

7 0.00 0.01 6 0.01 0.00 6 0.03 0.03
15 0.02 0.02 NA® NA NA NA NA NA
19 0.11 0.11 21 0.02 0.00 21 0.16 0.15
27 0.57 0.57 27 0.19 0.08 28 0.73 0.73
34 0.89 0.89 34 0.31 0.19 35 0.66 0.65
41 0.99 0.99 41 0.26 0.18 41 0.67 0.66
48 1.00 1.00 48 0.53 0.31 49 0.89 0.89
55 1.00 1.00 54 0.70 0.50 54 0.43 0.43
62 1.00 1.00 62 0.96 0.91 64 0.83 0.82
69 0.96 0.96 69 0.94 0.90 71 0.73 0.72
76 0.74 0.74
83 0.47 0.47

Fraction correctly predicted
RC90 WCa WCb

Time inf* n-i! Time inf n-i Time inf n-i

0 1.00 0.99 0 0.16 0.99 0 0.42 0.97

7 0.50 0.99 6 0.26 0.99 6 0.16 0.99
15 1.00 0.91 NA® NA NA NA NA NA
19 0.59 0.75 21 0.13 0.91 21 0.88 0.45
27 1.00 0.11 27 0.45 0.89 28 0.78 0.86
34 1.00 0.03 34 0.63 0.91 35 0.90 0.77
41 1.00 0.33 41 0.70 0.85 41 0.92 0.70
48 1.00 1.00 48 0.58 0.86 49 0.77 0.80
55 1.00 1.00 54 0.72 0.96 54 0.87 0.17
62 1.00 0.83 62 0.95 0.20 64 0.80 0.33
69 0.97 0.19 69 0.96 0.15 71 0.79 0.28
76 0.96 0.18
83 0.97 0.42
*Predicted.
"Not available,
“inf: based on number of visibly diseased plants.
“n-i: based on number of healthy plants.
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Translation invariance: A regionalized variable is called trans-
lation invariant if its basic properties, such as mean, variance,
covariance structure, etc., are similar at different locations.
Translation invariance extends well to univariate and bivariate
distributions.

Translation vector: A translation vector separates two locations
at which the regionalized variables are observable or have been
measured.

2nd order stationarity: Second order stationarity, in addition to
translation invariance of any bivariate distribution, implies that
the covariance exists and depends only on the distance, A,
between pairs of locations and not on their individual spatial
locations. This further implies that both the variance and the
mean exist and do not depend on spatial locations.

Intrinsic hypothesis: A somewhat weaker assumption than second
order stationarity is summarized as the intrinsic hypothesis:
1) The expectation of Z(x) exists and is independent of the
location, x;

2) For all vectors, h, the increment Z(x) — Z(x + h) has a
finite variance, independent of x, half of which is equal to
the semivariogram.

Lag vector: The distance vector, h, between two locations where
the regionalized variable can be (or is) observed.

Semivariogram: For any lag vector, A, the semivariogram is
defined as half the expectation of the squared difference of
the random field at locations separated by that distance: y(h)
= 1 /2E[Z(x) — Z(x + h)]’, where E denotes the mathematical
expectation.

Range: The range of a semivariogram is the maximum distance
separating points of a regionalized variable that has any sig-
nificant statistical dependence. The range is the smallest semi-
variogram argument for which the semivariogram is either
exactly equal to the sill or asymptotically close to the sill.

Sill: The limiting value for large arguments of a semivariogram.

Nugget effect: An apparent discontinuity in the experimental
semivariogram near the origin.

Relative nugget: The ratio between the nugget effect and the sill
value, indicating which fraction of the variability is of a non-
spatial nature.

Isotropy: The characteristic of a semivariogram to depend only
on the length, |A| = \/(h + h} + h?), of the separation vector,
and not on its direction.

Anisotropy: The quality or state not possessing isotropy.

Conditionally nonnegative definite: A semivariogram, y(h), is said
to be conditionally nonnegative definite if

m m

-2 2% aa;v(x;— x;) =0

i=1 j=I

for all permissible coefficients (a,, as,...,a,,).

Kronecker 8: The function 8(x), which is equal to one if x =
0 and vanishes elsewhere.

Kriging: A collection of interpolation methods, based on pre-
dicting the value of a random function at an unvisited
(nonsampled) point in space and time.
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