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ABSTRACT

Nilsson, M., Elmgvist, T., and Carlsson, U. 1994, Use of near-infrared
reflectance spectrometry and multivariate data analysis to detect anther
smut disease (Microbotryum violaceum) in Silene dioica. Phytopathology
84:764-770.

Near-infrared reflectance (NIR) spectral data was used in principal
component analysis (PCA) to detect infection of Silene dicica by Micro-
botryum violaceum. Rosette leaf samples were accurately identified as
either healthy (97%) or infected (96%) when NIR data was analyzed by

PCA. The two classes overlapped slightly when principal component
models were used to classify unknown samples. A method to measure
the degree of infection is also presented. The use of NIR and PCA for
both detection and quantification of fungal biomass in plant material
should be useful for studying plant-pathogen interactions and as a method
for assessing disease incidence in crops.

Additional keywords: chitin, pattern recognition.

In plant populations, it is often very difficult to determine the
incidence of infection caused by fungal pathogens. Pathogens
often cause apparent symptoms of infection only after a period
of incubation (9,24,36). Symptoms may be present only in specific
tissues, and some infections may be completely asymptotic (6,8).
In order to model plant-pathogen dynamics, it is essential to know
the actual incidence of plant infection in a population (i.e., the
proportion of plants infected) in contrast to disease incidence,
as determined by visual inspection.

Different strategies for detection of plant pathogens have been
utilized. The oldest and most common method is histological
examination of stained preparations (20,26,29). This method is
quite reliable in some cases but not in others. Chemical quantifi-
cation of compounds specific to fungal pathogens, such as chitin
(27,28,35) and ergosterol (14,23,33), has been used with good
results. Whipps et al (37) provided an excellent review of the
use of cell wall compounds, storage carbohydrates, and enzymes
as biochemical markers for fungal pathogens. They pointed out
that for quantitative analyses, a thorough study of the variation
in fungal components during the different phases of the host-
parasite interaction is needed. DNA hybridization (13) and im-
munofluorescence (17) are techniques that have been used to assess
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the presence of fungi in plant material. Both techniques give good
results, but they are highly species specific and therefore need
development for every new pathogen studied.

Only a few attempts have been made to use absorbance in
the near-infrared region as a means to detect the presence of
plant pathogens. Birth (5) constructed a “smut meter” that deter-
mined the number of spores in wheat. Another approach was
used by Asher et al(2), who collected spores from fungal pathogens
on glass-fiber disks. Absorbances at three different wavelengths
were measured and highly correlated (>0.9) with actual spore
counts made with a hemacytometer. For potato tubers, reflectance
in the near-infrared region was found to be altered by certain
diseases and defects (25). Detection and quantification of molds
in hay and cereals have been performed with near-infrared re-
flectance (NIR) spectroscopy calibrated by high-performance lig-
uid chromatography to determine chitin content and different
amounts of fungal mycelium mixed with barley grains (30-32).

Organic chemical compounds can be analyzed by measuring
the absorbance spectrum in the near-infrared range with NIR
spectrometry (21,22). The main constituents of organic material
(water, fat, protein, and carbohydrates) show distinct, although
overlapping, radiation absorption spectra in the NIR region
(700-2,500 nm) (22). The resulting spectra of complex organic
materials are composed of overlapping spectra specific for every
chemical constituent and in most cases do not reveal any visually



interpretable information by themselves. To gain more interpret-
able information from NIR data, multivariate data analysis can
be used (16,18), either for discrimination between samples or for
prediction of certain constituents.

Silene dioica (L.) Clairv. (Caryophyllaceae) is a dioecious
perennial herb that is widespread in northern Fennoscandia (Nor-
way, Sweden, and Finland). It occurs in wet, mesic, moderately
to richly fertile soils found in meadows, deciduous and coniferous
forests, and the deciduous phase of primary successions along
the shore of the Gulf of Bothnia. It may produce several erect
flowering shoots, and the basal rosette leaves persist through the
winter. New leafy shoots are produced during the summer as
leafy stolons. Flowering begins in late May or early June (males
a few days before females), and seeds are dispersed in mid- to
late July.

Populations of S. dioica are frequently infected by Micro-
botryum violaceum (Brandenburger and Schwinn) G. Deml. and
Oberwinkler (Ustilaginales) (syn. Ustilago violacea). The disease
is systemic and results in sterility in both male and female plants.
Teliospores are transmitted mainly by pollinating insects (4).
Spores deposited on healthy flowers germinate and undergo
meiosis to produce haploid sporidia of opposite mating types.
These opposite mating types conjugate, resulting in dikaryotic
hyphae that invade the host. The fungus grows through the plant
and survives the winter in the root. During the next season, all
flowers on the infected plant exhibit disease symptoms. Infection
results in a striking change in floral morphology, and stamens
with anther sacs filled with fungus spores develop in both male
and female flowers (4).

The objectives of this study were 1) to develop a method that
used both NIR spectrometry and principal component analysis
(PCA) to detect the presence of fungal plant pathogens in plant
tissues and 2) more specifically, to develop a calibration model
based on NIR absorbance spectra, which discriminate between
healthy and infected plants of S. dioica. In S. dioica, infection
is visually detectable only in plants in the flowering stage. With
the existing methods, mycelium can be found abundantly in
meristematic tissues close to flowers and sparingly in shoots or
leaves away from the flowers (15). Audran and Batcho (3) con-
cluded that when only vegetative tissues are available, it is difficult
with existing techniques to separate infected from noninfected
S. dioica.

MATERIALS AND METHODS

Plants. The plants used in this study were collected from three
different field populations located on the coast of the Gulf of
Bothnia (64°14'N, 22°16’E) during the summer of 1988. They
were classified as healthy or infected according to the presence
or absence of teliospores in flowers. Only flowering plants with
either all flowers infected or all flowers healthy were collected.

NIR spectroscopy. A model 400 D/R InfraAlyzer (Technicon
Industrial Systems, New York, NY), operating with 19 different
optical filters from 1,445 to 2,348 nm, was used to collect NIR
spectra of the samples. The following wavelengths (nanometers)
were used: 1,445, 1,680, 1,722, 1,734, 1,759, 1,778, 1,818, 1,940,
1,982, 2,100, 2,139, 2,180, 2,190, 2,208, 2,230, 2,270, 2,310, 2,336,
and 2,348. Plant samples were dried for 48 h at 40 C and milled
in a ball mill for 1 min. Samples of approximately 1 ml were
used to obtain spectral data.

Plant material for data sets I and II were collected in late
July (late flowering) and material for set III in early June (early
flowering) (Fig. 1). Data set IV was derived from plants in data
set I1. It comprises | 1 mixtures with increasing amounts of infected
leaves as follows: sample 1, 09%; 2, 9.6%; 3, 21.4%; 4, 28.3%;
5, 39.4%; 6, 49.4%; 7, 60.3%; 8, 70.0%:; 9, 80.1%; 10, 91.0%, and
11, 100%.

Data analysis. Samples were classified into one of four groups
according to tissue type (stem or leaves) and infection (present
or absent) (Fig. 1). The statistical analysis was executed in three
phases: 1) sorting the samples into classes according to similarities
in measured NIR variables; 2) describing the classes by principal

component models; and 3) validating the class models with the
use of a set of reference samples. Outliers (i.e., single samples
that deviated from any of the sample populations) can be detected
by analysis of leverage, by unmodeled variance, and/ or by plotting
the component scores. They were recognized in the principal
component score plots and removed after analysis phase 1. The
effect of outliers in either calibration or test data sets is discussed
by Martens and Ness (19). The effect of different light scattering
from the samples was corrected by using mean value scatter cor-
rection (11). For multivariate data analysis, the SIMCA software
(Umetri AB, Umea, Sweden) was used (39-41) on an IBM-AT
personal computer. A general description of PCA can be found
elsewhere (16,18). Below, only the special multivariate procedures
used in the actual data analysis are outlined.

The data (absorbances at each wavelength) for each class (one
of the data sets I-1V in Figure 1) were approximated by a separate
principal component model. The class limits were determined by
the standard deviation (SD) of the residuals between the fitted
variables of the samples and the measured ones. New, unclassified
NIR absorbance spectra were then classified according to their
degree of fit to the different class models (i.e., whether or not
the distance between the sample and the model fell inside the
95% confidence interval of the class limits) by multiple linear
regression (1,40). The data were analyzed sequentially, as outlined
in Figure 1 and Table 1. Each class was scaled separately (1)
and described by the principal components of its NIR spectra.
The number of significant (CSV/SD < 0.95, where CSV is the
cross-validated SD after the actual component and SD is the
residual standard deviation before computation of the actual
component) components in each class model was determined by
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Fig. 1. Flow chart of the data sets, steps in the principal component
analysis (PCA), and subsequent classification of unknown samples. The
arrows show how the data sets were partitioned for further analysis, Data
sets I and II are from the same sampling occasion. Data set III is from
the same population but was collected 3 mo earlier, and set IV consists
of 11 mixtures of rosette leaves from one infected and two healthy plants.
The number at the upper right corner of each box is the number of
variables (wavelengths), and the number at the lower left is the number
of samples. PCA numbers refer to the model numbers listed in Table 1.
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cross-validation (38). If all significant components were used, the
model of the reference set would be overfitted (20) and samples
in the test set would be classified outside the 95% confidence
limits of its own class. The optimal number of components used
for classification of unknown samples was determined by com-
parison of the class SD of the reference set with the class SD
of the test set. Additional models for both the reference and the
test sets were calculated by increasing the number of significant
principal components. The number of components selected was
based on the SD of the test set that most closely approximated
that of the reference set.

The class limits used for classification of new samples were
calculated as follows. One fourth of the samples were excluded
at a time, and a new model was calculated from the remaining
samples. The excluded samples were reclassified by the model.
This procedure was repeated until all samples in the calibration
set were reclassified. From the SD of the reclassified sample,
a mean SD was calculated. This SD was obtained from the resid-
uals between classified and measured variables and therefore was
more related to the SD of new, unknown samples (34). F values
were used to test whether the classified samples significantly de-
viated from the model; confidence intervals of 95% were used.

RESULTS

Principal component models accounted for more than 95% of
the variance in absorbance in diseased and healthy plants of S.
dioica (Table 1). When all samples were analyzed by principal
component analysis model 1 (PCA 1; PCAs 1-9 refer to models
in Table 1), the data were clearly separated into stems and rosette
leaves (Fig. 2A). A less clear separation was seen between healthy
and infected samples. In Figure 2A, one sample from the class
of healthy leaves was revealed as an outlier and removed in the
subsequent data analyses. According to the separation obtained
in PCA 1, the data from stems (set I; data sets I-1V refer to
Figure 1 and Table 1) and rosette leaves (set II) were further
treated separately. In the PCA of stems only (PCA 2), the two
first components explained 66% of the variance; however, both
components only partly distinguished infected and noninfected
stems (Fig. 2B). In the analysis of data from the rosette leaves
(set 11, PCA 3), infected leaves were distinguished from healthy

leaves (Fig. 2C and D). Thus, data from the rosette leaves (set
I1) were chosen for further development of the detection of M.
violaceum in S. dioica.

In phase 2, one model was computed for the healthy class
(PCA 4) and one for the infected class (PCA 5). Each class was
described with seven significant components. The samples were
expected to have a short distance (i.e., the SD of the residuals
between the fitted and measured variables of the sample) to their
own class model and a longer distance to the model of the other
classes. The distances to the models for healthy and infected leaves
(PCAs 4 and 5) for every sample in data set Il (rosette leaves)
are plotted in Figure 3A. The 95% confidence limit for the classes
is also indicated. One healthy and one infected sample were classi-
fied inside the 95% confidence limit for the wrong class.

Classification of unknown samples. To test the accuracy of
the classification properties of the models, three different sets
of data were used (Fig. 1). Twenty-five percent of the rosette
leaves (set II) were removed, and two new models (PCAs 6 and
7) were developed on the basis of the remaining 75% of the samples.
The SDs for all samples included in the models are plotted in
Figure 3B. The models (PCAs 6 and 7) computed on this data
set were used for further classification of three sets of unknown
samples, shown in Figure 3C. The removed samples (25%) were
fitted to the class models of healthy (PCA 6) and infected (PCA
7) samples (Fig. 3C). Another set of samples (n = 10) from plants
collected earlier from the same plant populations (set III) were
also classified by PCAs 6 and 7 (Fig. 3C).

Of the samples that had been removed from the original data
set (rosette leaves of set 11), three healthy samples and one infected
sample were classified to both classes, and one sample was fitted
outside the class of healthy leaves. Of the samples of rosette leaves
collected in early June (test set III), all but one of the healthy
and two of the infected samples were classified as both healthy
and infected. One healthy sample was outside its own class.

The two test sets used as unknown samples (Fig. 1) were included
when PCAs 8 and 9 were calculated (Fig. 3D). The plotted samples
are equal to those in Figure 3C, but in this figure they are classified
by PCAs 6 and 7. The two plots are similar, but slightly better
discrimination was obtained when all samples were included for
model development. The relative distances (i.e., the residual vari-
ance for the sample not described by the model) between the

TABLE 1. Principal component models developed from different data sets of stems and rosette leaves of Silene diocea

Principal
component Principal & Sum of
analysis rincipal component explained variance
model Data set number Cl C2 8 C4 C5 C6 C7 (component used)
1 Stems and leaves, [ and 11 0.70 0.60 0.80 0.73 0.64 0.89 ns
49.6 33.6 1.5 4.8 2.9 0.6 - 99.0 (6)
2 Stems, | 0.73 0.88 0.66 0.72 0.74 0.93 ns
47.0 19.3 19.7 8.0 3.0 0.9 353 97.9 (6)
3 Rosette leaves, [1 0.68 0.61 0.73 0.67 0.90 ns ns
55.9 279 8.1 5.0 1.0 . — 97.9 (5)
4 Rosette leaves, 11 healthy 0.79 0.72 0.85 0.70 0.91 0.82 0.83
47.2 29.5 8.5 8.9 1.9 1.3 1.0 98.5(7)
5 Rosette leaves, Il infected 0.82 0.74 0.73 0.75 0.85 0.85 0.85
42.1 29.7 14.1 7.9 2.6 1.6 0.9 98.9(7)
6 75% of rosette leaves, Il infected 0.71 0.71 0.98 0.83 0.85 ns ns
51.4 26.9 9.1 6.6 2.6 - - 97.7(5)
7 75% of rosette leaves, Il infected 0.82 0.71 0.82 0.78 0.80 0.86 ns
43.7 28.7 1.1 8.9 35 2.0 cen 97.9 (6)
8 Rosette leaves, 11 and 11 healthy 0.75 0.64 0.78 0.76 0.91 0.87 0.88
46.6 338 9.1 5.3 1.5 1.0 1.0 98.3(7)
9 Rosette leaves, I1 and 111 infected 0.76 0.71 0.81 0.73 0.79 ns ns
44 4 28.5 11.3 8.5 3.0 95.7 (5)

*The first row of numbers for each data set contains the cross-validation terms for determination of component significance (CSV/SD < 0.95,
where CSV = cross-validated SD after the actual component and SD = the standard deviation before calculation of the actual component); the

second row contains the explained variance (%) by each component. ns = Not significant at the 95% level, and ...

variance.
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model and the samples from infected plants were nearly the same,
regardless of whether the samples were modeled or classified.
The distance to the healthy model was very different and depended
on whether the samples had been included in the model compu-
tation.

Quantitative response. Data set IV consisted of samples with
11 different concentrations of healthy and infected rosette leaves.
These samples were classified by PCAs 6 and 7, and a plot of
minimum class distance is shown in Figure 4. One severely infected
sample was used for the mixtures. This sample (I1 in Figure
4) is classified as infected and has by far the longest distance
to the healthy model. The healthy sample used for mixtures was
made of two different healthy samples of rosette leaves. The series
of mixtures was positioned from the 100% infected sample along
the axis for the infected model towards the model of the healthy
samples. All samples were close to the model for infected leaves.
The three samples with the lowest concentrations of infected leaves
were classified as both infected and healthy.

Absorbance at different wavelengths. Absorbances at each
wavelength were related differently to infected and healthy plants
(an example from PCA 3 is shown in Table 2). The explained
variance for each variable together with the chemical assignments
for each wavelength are reported (22). The plus or minus sign
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in front of the explained variance refers to whether the variable
is positively or negatively correlated to the component. The first
two wavelengths with negative signs for the explained variance
were the variables responsible for the negative values of com-
ponent | in PCA 3 of all rosette leaves and were strongly correlated
to infected plants. Positive values for explained variance in this
first component were related to the healthy plants, i.e., positive
principal component values in Figure 2C.

DISCUSSION

According to the principal component models, the NIR spectra
contain information about both differences in plant tissue and
the presence of M. violaceum. Discrimination between healthy
and infected samples is most pronounced in the rosette leaves.
For §. dioica, the NIR method successfully discriminated between
healthy and diseased tissue where other methods had failed (3).
In previous work, the fungal pathogen M. violaceum could be
detected only in the stems close to the flowers (15). In this patho-
system, the NIR method will be of value in epidemiological studies.
Previous ecological models have been based only on the recorded
incidence among the flowering portion of a population at a par-
ticular season, although nonflowering plants may also be infected.
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Fig. 2. Principal component scores after different data sets. Each point is one sample as determined by 19 absorbance values. A, Principal components
I and 2 after principal component analysis 1 of near-infrared reflectance data sets I and II (Fig. 1) from stems and rosette leaves. B, Principal
components | and 2 from healthy and infected stems (data set I). The same data on stems as in A were used. C, Principal components 1 and
2 from healthy and infected rosette leaves (data set II), with one outlier removed as indicated in A. D, Principal components | and 3 from healthy

and infected rosette leaves (data set II).
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Modeling and classification. Healthy and infected rosette leaves
were accurately separated into two classes (PCAs 6 and 7, Table
1). Two infected samples were classified just inside the 95% con-
fidence limit of the healthy samples. Classifications of the healthy
samples are less accurate. Two healthy plants were excluded from
their own class. Half of the samples of healthy plants were classi-
fied both to their own class and to the class of infected plants.
If the samples in this test set were included in the reference set
(Fig. 3D), only two infected and two healthy samples would have
been placed in both classes. All others were accurately classified.
This may indicate that there is variation in the plant material
not covered by the reference set. If this is the case, then the
problem probably can be solved by including more plants in the
reference set, thereby covering more of the class-specific variation
and giving a more robust model. Once a principal component
model of NIR data from a certain plant-pathogen system has
been established, this model can be used for classification of new,
unknown samples. Eventual outliers among the new samples can
be detected by any of the procedures discussed in Material and

Methods.
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Classification of mixtures. When the samples of mixtures in
set IV were classified by PCAs 6 and 7, it was obvious that the
distance between the model and the sample represented a quanti-
tative measurement of the degree of fungus-infected material in
the mixture. All samples, except the healthy and the one with
the lowest proportion of infected material (10%), were classified
relative to each other according to the concentration of infected
plant material. The uncertainty at the lowest proportion of infected
material may have resulted from poor mixing or low accuracy
at this concentration.

Chemical origin of differences. The chemical differences be-
tween healthy and infected plants can be caused by either the
chemical composition of the fungal parasite itself or a response
from the host plant. In the latter case, we know that infection
of S. dioica results in a sex change in females and changes in
flower phenology, allocation of photosynthate (4,7), and
palatability to herbivores (T. Elmqvist, personal observation). All
these changes also imply different allocation of nutrients and
energy and possibly even production of secondary metabolites.
Some interpretations about the origin of discriminating chemical
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Fig. 3. The minimal class distance between each sample and class models of healthy and infected rosette leaves plotted against each other (i.e.,
the standard deviation [SD] for the squared residuals between the measured variables and the estimate by the model of the same variable). The
distance to the model for the infected plants is plotted on the x-axis and the distance to the model for healthy plants on the y-axis. The same
data set as in Figure 2C and D with rosette leaves was used., The 95% confidence limits for the models are marked with lines. A, Samples of
rosette leaves (data set 1I) fitted by class models 4 and 5 are plotted against each other. Samples are the same as in Figure 2C. B, Samples of
rosette leaves (data set II) fitted by class models 6 and 7 calculated on 75% of the data. These models were used for further classification of
unknown objects. C, Samples of rosette leaves classified by principal component analysis (PCA) models 6 and 7. Two sets of unknown samples
are classified, the 25% excluded in data set II and test set III from an earlier sampling. Dotted lines indicate 95% confidence limits of the object
validation procedure. D, Samples are the same as in C, but they have been fitted by PCA models 8 and 9 together with the samples used for
the classification models 6 and 7. 00 = Healthy rosette leaves; Ml = infected rosette leaves from data set II; & = healthy rosette leaves; and €

= infected rosette leaves from the earlier sampled test set 111.
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differences can also be made. In the analysis of data set I1, most
of the separation between healthy and infected plants was
contained in PC 1. The influence (explained variance) from each
wavelength to this separation is analyzed in Table 2. The 1,940-
and 1,982-nm wavelengths appear to be important in detecting
infected plants. As indicated in Table 2, amine and amide groups,
as well as water, absorb energy at these wavelengths (12). Both
glucose and galactose amines constitute chitin and other important
cell wall components in fungi. Chitin is found in many
Basidiomycetes (10), including Microbotryum spp. Therefore, it
is likely that chitin is the compound most responsible for the
NIR differences between infected and noninfected plants,
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Fig. 4. Eleven mixtures of infected and healthy rosette leaves classified
by principal component analysis models 6 and 7, the same models used
for classification in Figure 3C. Object 1 consists of two healthy samples
and 11 of a highly infected sample. The degree of infection increases
by approximately 10% in each object. The plot is equal to Figure 3A-D.

The possibility of using NIR for detection of fungi provides
several advantages. Large quantities of samples can be analyzed,
and the same instrumentation and methods can probably be used
for different plant pathogens. The NIR-PCA method accurately
discriminates between healthy and infected S. dioica in cases where
other methods have failed. The application of the method to field
studies will enable researchers to estimate the actual infection
incidence and not be limited to the disease incidence based on
the flowering portion of the plant population. Furthermore, with
this method, it will be possible to follow development of the
pathogen in the plants during the season. This information will
be of great value for all models on host-pathogen interaction
in this and similar systems. Also, this method will enable us to
determine whether there is variation in both the pathogen and
the host in characters related to virulence and resistance, e.g.,
whether different isolates of the pathogen show differences in
growth rates in hosts originating from diseased and nondiseased
populations.

We suggest that the NIR-PCA method could be applicable
to other pathosystems where presence or absence of a pathogen
is difficult to determine macroscopically. The NIR-PCA method
may prove to be superior to other methods because it is simple
and fast and only small amounts of dried plant tissue are needed.
The dried samples could also be used after the NIR analysis for
further specific chemical analyses. Although the instruments are
expensive, they recently have become very common in food and
feed research, Therefore, these instruments may be readily avail-
able for many researchers in phytopathology.
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