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ABSTRACT

Leonard, K. J. 1994, Stability of equilibria in a gene-for-gene coevolution
model of host-parasite interactions. Phytopathology 84:70-77.

Stability of resistance/susceptibility and virulence/avirulence polymor-
phisms in a gene-for-gene host-parasite coevolution model was tested
by numerical analysis. Computer simulations were run for 752 different
combinations of parameter values in the model. Repeated simulations
with different initial frequencies of resistance and virulence alleles revealed
the presence of an unstable limit cycle for each combination of parameter
values. Represented in a phase plane, unstable limit cycles repel gene
frequencies (i.e., gene frequencies starting inside the limit cycle spiral
inward toward an internal equilibrium point; those starting outside the
limit cycle spiral outward toward fixation or extinction). Depending on
their initial frequencies in the model, alleles for virulence and suscepti-
bility either spiraled toward equilibrium or they became fixed. Likewise,
alleles for avirulence and resistance moved either toward equilibrium or
extinction. Thus, the position of the unstable limit cycle and the initial
gene frequencies determined whether the system went toward a stable

equilibrium or fixation of virulence and susceptibility. The position of
the unstable limit cycle depended on the values of key parameters in
the model. For some combinations of parameter values, the unstable
limit cycles extended so far from the equilibrium point that new genes
for virulence could not possibly enter the parasite population at frequencies
outside the limit cycle. In those cases, the polymorphisms were regarded
as stable in biological terms. Two versions of the coevolution model were
compared. In the hard-selection version, virulence alleles carry an asso-
ciated fitness cost of reduced inherent rate of reproduction on either
susceptible or resistant hosts. In the competition version, only unnecces-
sary virulence carries a fitness cost, because the cost of virulence is ex-
pressed as reduced competitive ability on susceptible hosts. Polymor-
phisms were stable for moderate costs of unnecessary virulence in the
competition version of the model but usually were not stable for the
hard-selection version. In the competition version, polymorphisms were
stable even when there was no cost of resistance, provided that the cost
of unnecessary virulence was moderately high.

Gene-for-gene interactions between host resistance and parasite
virulence commonly occur in plant diseases caused by biotrophic
pathogens as well as in some diseases caused by necrotrophic
pathogens. Often they are manifested as complex polymorphisms
with large numbers of resistance genes and corresponding
virulence genes in host and parasite populations (1). In diseases
of cultivated crops, such as the rusts and powdery mildews of
cereals, we characterize these polymorphisms in terms of
pathogenic races and race-specific resistance.

It is important to understand how such polymorphisms are
maintained in natural pathosystems, because the genes for race-
specific resistance in cultivated crops arose in wild ancestors of
those crops. Understanding why genes for resistance and virulence
persist at intermediate frequencies in natural pathosystems (1)
should help us enhance the durability of resistance in cultivated
crops. For example, with such understanding, we may find better
ways to identify durable resistance, or we may develop novel
ways of exploiting interactions that stabilize parasite populations
or minimize their damage to hosts.

In 1977, Leonard (10) proposed a model of selection pressures
in host-parasite interactions to account for polymorphisms of
resistance and virulence in natural pathosystems. In the model,
host and parasite fitness are interrelated. The frequency of
resistance in the host population determines whether selection
will favor genes for virulence or avirulence in the parasite. Like-
wise, the frequency of virulence in the parasite population deter-
mines whether selection will favor genes for resistance or
susceptibility in the host.

This article is in the public domain and not copyrightable. It may be freely
reprinted with customary crediting of the source. The American Phytopatho-
logical Society, 1994.
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The model has a single nontrivial, internal equilibrium point
at which selection pressures are balanced and there is no change
in the frequency of either resistance or virulence. This equilibrium
point is called internal, because it occurs at frequencies of resis-
tance and virulence greater than 0 and less than 1. The position
of the internal equilibrium point, in terms of frequencies of resis-
tance and virulence, depends on values assigned to key parameters
in the model.

The fact that the model has an equilibrium point, however,
does not necessarily mean that it is stable. Stable equilibrium
points are those for which any perturbation of gene frequencies
away from equilibrium will result in a return to the equilibrium
point. Return to a stable equilibrium may occur either directly
or through a series of damped oscillations of gene frequencies.
For unstable equilibrium points, gene frequencies will not return
to equilibrium after they have been displaced from it. They may
go toward fixation or extinction, or in the case of limit cycles,
other possibilities exist. Given reasonable estimates of likely ranges
for parameter values, it is easy to calculate the position of the
equilibrium point in Leonard’s model, but determining the
stability of equilibria in the model has proven more challenging.

The question of stability is significant, because Leonard’s model
may contain clues to the causes of stable polymorphisms in natural
pathosystems. The first test of this is to determine whether the
polymorphisms in the model are stable and similar to those
observed in natural pathosystems. Leonard’s model predicts equi-
librium frequencies of resistance (low frequency) and virulence
(high frequency) similar to those found in natural host-parasite
systems (2,5,10,11,14,19), but Sedcole (17) and Fleming (4)
questioned the stability of equilibria in the model.

Sedcole (17) and Fleming’s (4) mathematical analyses of
Leonard’s model were either inconclusive or indicated that the
equilibrium is unstable. However, these analyses are based on



linearized approximations of a nonlinear system, so they describe
only the behavior (i.e., patterns of gene frequency changes) near
the equilibrium point. As described below, it is possible for stable
polymorphisms to exist in a model even if the equilibrium point
is locally unstable.

Sedcole (17), Fleming (4), and Leonard and Czochor (14) tested
the model’s behavior away from the equilibrium point through
numerical analysis by way of computer simulations. Their analy-
ses, however, were too superficial to clarify the true behavior
of the model. They used only a few sets of parameter values
and did not test a wide range of gene frequency oscillations about
the equilibrium point. Therefore, the specific tracks of gene fre-
quency oscillations that they observed either converging toward
the equilibrium point or diverging from it cannot be regarded

as representative of all possible outcomes from different sets of
parameter values or initial gene frequencies.

Czochor (3) developed a new mathematical method for differ-
ence equations to analyze behavior of the model beyond the
immediate vicinity of the equilibrium point. His method is so
computationally complex that he was limited in the number of
combinations of parameter values that he could test. Therefore,
he could not make general conclusions about the behavior of
the model.

Although Fleming (4) and Leonard and Czochor (13) mentioned
the possibility that limit cycles may occur in Leonard’s model,
they did not identify any specific limit cycles. Limit cycles for
a model such as Leonard’s are defined in terms of a phase plane
in which the frequency of virulence is plotted on one axis and
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Fig. 1. Diagrammatic representations of four patterns of gene frequency changes in hypothetical host-parasite models. A, Stable equilibrium: frequencies
of the resistance and virulence genes, plotted in a phase plane, spiral inward toward a stable, internal equilibrium point (EP). B, Unstable equilibrium:
gene frequencies spiral outward away from an unstable equilibrium point (EP) until virulence becomes fixed in the parasite population and resistance
is lost in the host population. C, Stable limit cycle: if gene frequencies start anywhere on the closed trajectory represented by the circle with the
solid line, they remain in that trajectory as they cycle around the internal equilibrium point (EP). Gene frequencies starting outside the limit cycle
(for example at point O), spiral inward toward the limit cycle. Gene frequencies starting inside the limit cycle (e.g., point I) spiral outward toward
the limit cycle. D, Unstable limit cycle: gene frequencies starting on an unstable limit cycle continue in its closed trajectory, but gene frequencies
that start outside the unstable limit cycle (e.g., point O) spiral outward toward fixation of virulence and loss of resistance. Gene frequencies that
start inside the unstable limit cycle (e.g., point I) spiral inward toward the internal equilibrium point (EP). For a very large unstable limit cycle
whose trajectory essentially follows the boundaries of the phase plane, nearly any initial frequencies of resistance and virulence genes lead to an
inward spiral toward the internal EP.
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the frequency of resistance is plotted on the other (Fig. 1). Each
combination of resistance and virulence frequencies can be repre-
sented by a point in the phase plane. Selection pressures defined
in Leonard’s model cause the combined frequency values for
successive host and parasite generations to follow a trajectory
around the internal equilibrium point in the phase plane. A limit
cycle is a trajectory that forms a closed loop around the internal
equilibrium point. That is, if a limit cycle exists and if the fre-
quencies of resistance and virulence start on that limit cycle, they
will always stay on the cycle as they move around the equilibrium
point with successive generations.

Limit cycles may be either stable or unstable. The limit cycle
is said to be stable if gene frequencies are attracted to it (Fig.
1C). That is, for stable limit cycles, frequencies that start either
inside (nearer the equilibrium point) or outside the limit cycle
will follow trajectories that bring them into the limit cycle. The
opposite occurs with unstable limit cycles (Fig. 1D). Gene
frequencies only slightly inside an unstable limit cycle will spiral
away from the limit cycle and toward the equilibrium point as
if repelled by the limit cycle. Gene frequencies that start slightly
outside an unstable limit cycle will spiral outward toward the
edges of the phase plane where the frequencies become either
Oorl.

Because Leonard’s model combines two nonlinear equations,
it is not obvious from simple inspection whether the trajectories
of gene frequencies will spiral inward or outward from any given
point that is not at equilibrium. Furthermore, no mathematical
methods have been developed to detect limit cycles in models
like Leonard’s. This is because Leonard’s model employs differ-
ence equations rather than differential equations, which are bio-
logically less realistic but mathematically more tractable.

In the research described here, the behavior of Leonard’s model
was analyzed through multiple simulation runs with each of 752
different sets of parameter values using a range of different starting
points for resistance and virulence gene frequencies. The results
of these simulations demonstrated that the model has an unstable
limit cycle. This has implications not previously encountered in
analyses of host-parasite coevolution models. As described below,
equilibria in the model may be stable in biological terms even
though they do not fit mathematical criteria of stability.

THE MODEL

The model is for a gene-for-gene interaction between a foliar
parasite causing localized infections in an annual plant species
in an environment with a discrete growing season in which there
is one host generation per year (10,11,13,14). For simplicity, only
one host locus and one parasite locus are considered. There are
two alleles at the host locus, one for resistance and one for
susceptibility, and there are two alleles at the parasite locus, one
for virulence and one for avirulence. As in typical gene-for-gene
interactions, the avirulent parasite phenotype attacks the sus-
ceptible host phenotype that is also susceptible to the virulent
phenotype. The allele for resistance confers complete or partial
resistance to the avirulent phenotype of the parasite but is ineffec-
tive against the virulent phenotype.

The relative fitnesses of parasite phenotypes are determined
by the nature of the host population, and the relative fitnesses
of the host phenotypes are determined by the nature of the parasite
population (10,11,13,14). The parasite reproduces only on the
host plant, so relative fitnesses of the two parasite phenotypes
are determined only by the nature of the specific interaction
between the host and parasite phenotypes. Infection by the parasite
does not kill the host outright. Instead, the degree to which the
relative fitness of the host is reduced is determined by the severity
of disease (i.e., numbers of infections per plant) and by the effec-
tiveness of the host plant’s resistance to the parasite phenotypes
attacking it. The reduction in host fitness is manifested in the
succeeding generation. In the model, plants with fitness severely
impaired by disease produce fewer seeds than those with less
severe infection. This means that genetic feedback between host
and parasite populations is delayed instead of immediate (13,14).
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The composition of the parasite population may change in
response to selection during the current growing season, but the
impact of the changed parasite population on the relative fitness
of the host population is not seen until the next growing season
when the new generation of seedlings emerges.

In its simplest form, which will be considered here, the model
assumes the parasite to be haploid and resistance to be fully
dominant. This eliminates the possibility of heterozygote selection
as a mechanism to stabilize the polymorphisms. Obviously, stable
polymorphisms in self-pollinated hosts and asexual or haploid
parasites do not depend on heterozygote selection.

In the model, relative fitness of the avirulent parasite on the
susceptible host, W, is 1. Relative fitness of the avirulent parasite
on the resistant host, Wiz, is 1 — ¢, in which ¢ represents the
effectiveness of the resistance. Relative fitness of the virulent
parasite on the susceptible host, Wy, is 1 — k, in which k is
the cost of virulence. On the resistant host, the relative fitness
of the virulent parasite, Wy, is 1 — k + a, in which ¢ is a parameter
that determines the type of selection in the parasite population.
When a = 0, there is a cost of virulence even when it is necessary
to parasitize the resistant host. This can be thought of as hard
selection (20), in which the presence of the virulence gene causes
a reduction in the intrinsic rate of reproduction by the parasite.
Thus, the virulent parasite reproduces at the same rate on both
the susceptible and the resistant hosts, but its reproductive rate
is less than that of the avirulent parasite on the susceptible host.
On the other hand, when a = k, virulence has a fitness cost
only when it is unnecessary, as it is when the virulent parasite
infects a susceptible host. This can be thought of as soft selection
(20), in which the virulent parasite’s relative fitness is reduced
in competition with the avirulent parasite on a susceptible host
but not on a resistant host, which does not support the avirulent
parasite (10,11,14). Competition among multiple infections on
single host leaves has been shown to reduce the number of spores
produced per infection by rust or powdery mildew fungi (7-9,16,
18,21). The competition model assumes that on susceptible plants
infected with both virulent and avirulent parasite phenotypes,
the avirulent phenotypes can outcompete virulent phenotypes for
nutrients to support sporulation. This competition model with
a fitness cost only for unnecessary virulence is equivalent to the
model used by Groth and Person (6) and Person et al (15). If
there is no cost of unnecessary virulence (i.e., if k = 0), there
can be no internal equilibrium point and no stable polymorphism
in the model (10,11,13,14).

Relative fitness of the susceptible host in the model is 1 —
sWs when it is attacked by the avirulent parasite and 1 — sW
when it is attacked by the virulent parasite (10,11,13,14). Param-
eter s reflects the severity of disease and takes into account envi-
ronmental factors, such as climate and host density, that affect
disease development. The fitness of the resistant host is 1 — ¢
— SWg or 1 — ¢ — sWyr when attacked by the avirulent or
the virulent parasite. Parameter ¢ represents the fitness cost of
resistance either when it is unnecessary or when it is ineffective,
as it is if the parasite population is made up entirely of the virulent
phenotype.

Frequencies of genes for virulence and avirulence in the parasite
population at the start of the ith host generation are »; and m;,
respectively; frequencies of genes for resistance and susceptibility
in the host population in the model are p; and g, respectively.
For a haploid parasite, virulence and avirulence gene frequencies
are the same as the phenotype frequencies. For dominant
resistance genes, the frequency of the resistant host phenotype
is 1 — ¢’ Fitnesses of virulent and avirulent parasite phenotypes
are calculated by multiplying the proportions of resistant and
susceptible plants in the host population by the relative fitness
of virulent or avirulent phenotypes on each host phenotype (10,11,
13,14). During the growing season, selection changes the compo-
sition of the parasite population from »; to n,4,, in which

nll—k+(1— ¢} a]
TI-(-@) (- @) a+n—k

(eq. 1)
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The impact of the parasite on seed production by resistant and
susceptible host phenotypes determines the composition of the
host population in the next growing season. Fitnesses of resistant
and suscetible host phenotypes are determined by multiplying
the proportions of virulent and avirulent parasites by the relative
fitness of resistant or susceptible phenotypes when infected by
each parasite phenotype (10,11,13,14). The frequency of the gene
for resistance in the next growing season is

pill —c—s(I—=0+ny stk—a—1)]
1 —s+nks+(1—q)[ts—c—nm s(@+t ] (eq.2)

Pit1 =

At equilibrium, n;;; — n; = 0, so the frequency of resistant plants
at equilibrium (10) is
(1 =g )=k/(a+). (eq. 3)
Also, at equilibrium, p;1; — p; = 0, so the frequency of virulence
in the parasite population at equilibrium (10) is
A= (ts—c)/(ts + as). (eq. 4)
In addition to the internal equilibrium point, there are four trivial
equilibrium points at n =0, p =0, n=0,p =1, n = 1, p
=0;andn=1,p=1(@4).

From mathematical analysis as well as simulation runs, Sedcole
(17) concluded that the model’s internal equilibrium point is un-
stable. In his simulation, the gene frequencies spiraled outward
in the phase plane (away from the equilibrium point) until the
virulence gene became fixed in the parasite population (17).
However, Sedcole misinterpreted Leonard’s model. His simulation
had an immediate, reciprocal genetic feedback between host and
parasite populations such that n, = g(p,,n;) and p;+; = f(p;,n),
in which g(p;n;) and f(p,n;) are functions of p;, and n; the
frequencies of genes for resistance and virulence in the ith genera-
tion. Leonard, however, intended the model to represent a delayed
feedback, so that n;y = g(p;,n;) but pi1; = f(p;,n;41). The change
in virulence frequency during the growing season is determined
by the frequency of resistance and susceptibility in the host popula-
tion at the beginning of the growing season. These frequencies
are assumed to remain constant through the season. With delayed
feedback, however, the change in frequency of resistance from
one growing season to the next depends not on the composition
of the parasite population at the beginning of the first growing
season but rather on its composition at the end when host plant
seeds are produced. Leonard and Czochor’s (14) simulations using
delayed feedback showed two apparently different behaviors of
the model. When Leonard and Czochor started gene frequencies
near the internal equilibrium point, the frequencies cycled around
the equilibrium point in what appeared to be a closed trajectory.
When they started gene frequencies further from equilibrium, there
was a distinct inward spiral of the gene frequencies toward the
internal equilibrium point. Leonard and Czochor analyzed the
four trivial equilibrium points in the model mathematically and
found that they are unstable. They concluded that with no stable
equilibrium point in the model there must be one or more stable
limit cycles. This was the only way they could account for an
inward spiral of gene frequencies toward what they regarded as
an unstable internal equilibrium point.

Fleming (4) considered three variations of the model. The first
two are the versions used by Leonard (10,11) and Leonard and
Czochor (13,14) and Sedcole (17). The third version is for con-
tinuous reciprocal feedback between host and parasite popula-
tions. In Fleming’s third version, there are no discontinuities of
host generations such as occur in temperate regions or in warm
regions where the climate alternates between wet and dry seasons.

Fleming (4) confirmed that with Sedcole’s version of the model,
the internal equilibrium is locally unstable. However, his mathe-
matical analysis showed that Leonard and Czochor (13) were
incorrect in assuming that the internal equilibrium point in
Leonard’s version of the model is necessarily unstable. For some

parameter values in the model, particularly with low disease
severity (low s), his analysis was inconclusive. For high values
of s, the equilibrium in Leonard’s model was locally unstable.
Local instability means only that local perturbations of gene
frequencies to very small distances from the equilibrium point
will not result in a return to equilibrium. Fleming’s mathematical
analysis cannot determine what the trajectories would be for gene
frequencies that start further from the equilibrium point. Fleming’s
simulation run with Leonard’s model yielded an inward spiral
of gene frequencies toward the equilibrium point. Consequently,
he agreed with Leonard and Czochor (14) that there must be
a stable limit cycle, at least for the set of parameter values used
in his simulation run.

Fleming’s analysis of his continuous reciprocal feedback version
of the model showed neutral stability of the internal equilibrium
point. Neutral stability differs from limit cycles in allowing an
unlimited number of closed trajectories of gene frequencies around
the equilibrium point. With neutral stability there is no attraction
to or repulsion from any of the trajectories. In other words,
wherever the gene frequencies start in the phase plane, they will
repeatedly pass through that starting point in each cycle around
the equilibrium point. They will not deviate from the initial cycle
either toward or away from equilibrium.

Fleming (4) concluded that Leonard’s model lacks robustness,
because three different versions of the model all have different
stability properties. Therefore, Fleming suggested that other
factors not included in the model are necessary to explain the
observed stability of polymorphisms in natural host-parasite sys-
tems. It can be argued, however, that understanding which ver-
sions of the model will allow stable polymorphisms for the greatest
variety of parameter values should provide useful information
about which types of host-parasite interactions are more likely
to coevolve with stable gene-for-gene polymorphisms. For example,
Fleming’s analysis suggests that, other things being equal, diverse
polymorphisms of resistance/susceptibility and virulence/
avirulence are more likely to accumulate for diseases of annual
plants with discrete generations than for diseases of perennial
plants in the humid tropics.

Czochor (3) developed a new mathematical method to analyze
stability of internal equilibrium points in models that employ
difference equations rather than differential equations. The
method is analogous to but more complex than Fleming’s (4).
Application of Czochor’s method to Leonard’s model removes
the uncertainty over local stability of equilibria for certain sets
of parameter values that Fleming’s analysis cannot resolve.
Czochor’s method is extremely cumbersome, but he was able to
test 26 combinations of parameter values. He showed that the
internal equilibrium was stable for most combinations that he
tested, but the equilibrium was unstable for some sets of parameter
values with @ = 0 and s > 0.6.

Sedcole’s (17), Fleming’s (4), Leonard and Czochor’s (13), and
Czochor’s (3) analyses all provide partial views of the behavior
of Leonard’s model, but none of them provides a complete picture.
The results of extensive simulations reported here show features
of the model’s behavior that neither Sedcole, Fleming, Leonard,
nor Czochor anticipated. Briefly, the approach in these simula-
tions was to determine how far from the equilibrium point the
gene frequencies could start and still produce an inward spiral
toward the internal equilibrium point.

SIMULATIONS

A computer program was written in BASIC to run simulations
with Leonard’s model at double precision (i.e., gene frequencies
calculated to 17 significant digits in the range from 107 to 1.0)
on a personal computer. Although the program allows multiple
parasite generations per host generation, the simulation runs
described here were done with one parasite generation per host
generation. Results from a few preliminary simulation runs with
multiple pathogen generations per host generation yielded results
qualitatively similar to those described below for runs with single
pathogen generations per host generation.
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Examples of typical simulation runs are shown in Figure 2.
These two simulations were run with ¢+ = 1.0 (reproduction by
the avirulent parasite was completely suppressed on the resistant
host), ¢ = 0.03 (low cost of resistance), s = 0.8 (high disease
severity), k = 0.3 (moderately high cost of virulence), and a =
0 (fitness cost of virulence expressed as reduction in inherent
reproductive rate by the virulent parasite [i.e., hard selection]).
The first simulation (Fig. 2A) was started with virulence frequency
ny = 0.2 and frequency of the dominant resistance gene p, =
0.163, which is its equilibrium frequency; p = 1 — ¢, and at
equilibrium 1 — ¢* = k/(a + ¢). The simulation was run for
165 host generations (165 years for an annual plant). In the phase
plane, gene frequencies spiraled inward toward the equilibrium
point. This kind of inward spiral led Leonard and Czochor (13)
and Fleming (4) to believe that there must be a stable limit cycle
in the model if the internal equilibrium point is not locally stable.
The simulation shown in Figure 2A was continued through 2,000
host generations (data not shown) without encountering a stable
limit cycle, although the inward spiral became progressively less
pronounced as gene frequencies approached the equilibrium point.

The second simulation (Fig. 2B) was run with exactly the same
set of parameter values. Only the starting frequency of virulence
was changed, so that ny = 0.18 instead of 0.20. This time the
gene frequencies spiraled outward. In fact, in the next cycle around
the equilibrium point, the allele for virulence became fixed in
the parasite population, and the allele for susceptibility became
fixed in the host population. This behavior indicates an unstable
limit cycle passing through the phase plane to the left of the
equilibrium point at a position approximately equivalent to n
= 0.19. If the initial gene frequencies for virulence and resistance
start within the limit cycle, they spiral inward toward the equi-
librium point, but if they start outside the limit cycle, they spiral
outward until virulence and susceptibility become fixed in the
parasite and host populations.

The internal equilibrium point illustrated in Figure 2 is not
globally stable. In a globally stable system, any initial combination
of resistance and virulence gene frequencies would lead to a stable
equilibrium or, at least, a stable polymorphism. This is not the
case in Figure 2, because the polymorphism is quickly lost if
the gene frequencies start outside the unstable limit cycle. New
virulence genes introduced into the parasite population by muta-
tions or rare migrations certainly would enter that population
at frequencies less than 0.19. Therefore, they would be destined
for fixation in the population rather than coexistence with alleles
for avirulence in stable polymorphisms. For this reason, we may
regard the system represented in Figure 2 as unstable in biological
terms.

It is conceivable, however, that a system with an unstable limit
cycle could be stable in biological terms. If the unstable limit
cycle were larger than that shown in Figure 2 (i.e., if it extended
closer to the boundaries of the phase plane), new resistance and
virulence genes would be more likely to enter the populations
at initial frequencies within the unstable limit cycle. If the unstable
limit cycle was so large that it essentially followed the boundaries
of the phase plane, it would be virtually impossible for new genes
for resistance and virulence to enter the host and parasite popula-
tions at frequencies that were not within the limit cycle. In that
case, we would regard the system as highly stable in biological
terms, because it would inevitably lead to stable polymorphisms.
Thus, in biological terms, the degree of stability of the system
is proportional to the size of the unstable limit cycle.

As described in a preliminary report (12), there is an unstable
limit cycle for every set of parameter values that might be
reasonably considered in this model. The position of the limit
cycle, however, varies with different parameter values. As de-
scribed above, we can use the position of the limit cycle to assess
the stability of equilibria for the different parameter values. For
example, with some sets of parameter values, the unstable limit
cycle passes to the left of the equilibrium point at n < 107
Obviously, virulence could never occur at a frequency so low,
because the parasite population would never include as many
as 10% individuals. Therefore, we may regard the internal equi-
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Fig. 2. Phase planes from simulations with a host-parasite coevolution
model in which p is the frequency of a dominant allele for resistance
in the host and n is the frequency of virulence in a haploid parasite.
Simulations were run for the hard-selection version of the model (a =
0) with high disease severity (s = 0.8), complete resistance (:+ = 1.0),
low fitness cost of resistance (¢ = 0.03), and moderately high fitness
cost of virulence (k = 0.3). With these parameter values, the equilibrium
frequencies of alleles for virulence and resistance are n,, = 0.962 and
Deg = 0.163. A, Initial frequencies (SP) started at ng = 0.200 for virulence
and p, = 0.163 for resistance. The simulation was run for 165 generations.
The allele frequencies spiral inward. B, Parameter values are the same
as in A, but initial allele frequencies are ny, = 0.180 for virulence and
po = 0.163 for resistance. The simulation was run for 194 generations.
The outward spiral of allele frequencies in B, in contrast to the inward
spiral in A, indicates an unstable limit cycle that passes to the left of
the equilibrium point at approximately n = 0.190. Allele frequencies
starting anywhere inside the limit cycle spiral inward, and allele frequencies
starting outside the limit cycle spiral outward until the alleles for virulence
and susceptibility become fixed in the parasite and host populations.



librium point as stable under those conditions, regardless of what
a mathematical analysis may tell us.

NUMERICAL ANALYSIS OF STABILITY

Simulations were run for combinations of parameter values
over the following ranges: s = 0.2, 0.5, or 0.8; = 0.5, 0.8, or
1.0; ¢ = 0.00, 0.01, 0.02, 0.03, 0.05, 0.07, 0.10, 0.20, or 0.30;
k = 0.01, 0.02, 0.05, 0.10, 0.20, 0.30, 0.40, or 0.50; and a =
0.0 or k. It was not necessary to test every combination of
parameter values, because some did not yield an internal equi-
librium point. For each set of parameter values tested, the position
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of the unstable limit cycle was determined. The initial frequency
of the resistance gene, p,, in the test simulation runs was set
equal to its equilibrium frequency, and the initial frequency of
virulence, n,, was varied. Typically, the first run yielded an inward
spiral. Then the value of ny, was increased in each successive run
with the same set of parameter values until the gene frequencies
spiraled outward instead of inward.

For both the hard-selection version of Leonard’s model (a =
0) and the competition version (¢ = k), higher values of ¢, the
cost of resistance, lead to larger unstable limit cycles (i.e., greater
stability of equilibria in biological terms) (Fig. 3). In Figures
3 and 4, stability is represented in terms of —log n at the lowest
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Fig. 3. Effect of parameter values on stability of polymorphisms in a host-parasite coevolution model: s represents disease severity, ¢ effectiveness
of resistance (completely effective at ¢ = 1), ¢ cost of resistance, and k cost of virulence. Simulations were run for the hard-selection (graphs on
the left with @ = 0) and competition (graphs on the right with a = k) versions of the model. The position of the unstable limit cycle for each
combination of parameter values is indicated by —log n, in which n is the frequency of virulence at its lowest point on the limit cycle. In general
terms, the higher the position of a curve for values of —log n in each graph, the more stable the system is for that set of parameter values. Combinations
of parameters represented by points on the curves with —log n > 10 indicate stable equilibria, because new genes for virulence would enter the
system at n > 107", causing gene frequencies to spiral toward the equilibrium point (Fig. 1D). Equilibria are more stable for the competition
version than for the hard-selection version of the model. Also, stability increases with increasing disease severity in the competition version but

decreases in the hard-selection version of the model.
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point (i.e., nearest to 0) for » in the unstable limit cycle. If n,
occurs outside the limit cycle (nearer to 0), a stable polymorphism
will not arise. For ¢ < 0.05 in the hard-selection version, an
initial virulence frequency of n, < 10~° leads to fixation of viru-
lence and susceptibility rather than to a stable polymor;s)hism.
Parasite populations are likely to contain more than 10° indi-
viduals, and mutations to virulence are likely to occur at fre-
quencies less than 107° per generation. Therefore, the hard-selec-
tion version of the model does not allow stable polymorphisms
with resistance genes with fitness costs lower than 5%.
Furthermore, in the hard-selection version of the model, increasing
disease severity (greater values of s) reduces the stability of the
equilibria (Fig. 3) and, thus, reduces the probability that stable
polymorphisms could accumulate during coevolution.

The behavior of the competition version of Leonard’s model
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(a = k) differs from that of the hard-selection version. First,
the unstable limit cycle occurs further from the equilibrium point.
For low values of ¢, a stable polymorphism can be maintained
if the cost of the corresponding virulence, k, is great enough,
particularly for high values of s, the disease severity parameter
(Fig. 3). For example, at s = 0.8 and ¢ = 0.01, the unstable
limit cycle occurs at a position equivalent to » < 107% when
k = 0.35. If the parasite population contains less than 10%
individuals, any virulence must occur at a frequency within the
limit cycle. Notice that in the competition version of the model,
the equilibria become more stable with increasing disease severity.
In fact, with s = 0.8, it is possible to have stable polymorphisms
even when there is no cost of resistance (i.e., ¢ = 0.0). This can
occur for k >0.2. One exception to the trend of increasing stability
of equilibria with higher values of ¢ is shown in the breakdown
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Fig. 4. Effect of partial resistance on stability of equilibria in the hard-selection (graphs on the left with @ = 0) and competition (graphs on the
right with @ = k) versions of the host-parasite coevolution model. Figure 3 provides parameter details. The position of the unstable limit cycle
for each combination of parameter values is indicated by —log n, in which n is the frequency of virulence at its lowest point on the limit cycle.
In general terms, the higher the position of a curve for values of —log » in each graph, the more stable the system is for that set of parameter
values. Combinations of parameters represented by points on the curves with —log # > 10 indicate stable equilibria, because under those conditions
new genes for virulence would enter the system inside the limit cycle, causing gene frequencies to spiral toward the equilibrium point (Fig. 1D).
Equilibria are more stable for partial resistance (+ < 1.0) than for complete resistance ( = 1.0). This effect is more pronounced for the competition

version of the model (¢ = k) than for the hard-selection version (a = 0).
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of stability when ¢ = 0.3 and s = 0.8. In environments of high
disease severity, resistance genes with too great a cost in fitness
would not be maintained in stable polymorphisms in the
competition model. Of course, high-cost resistance genes also
would be lost from the host population at very low disease
severities, because their benefits would not outweigh their costs.

For both the hard-selection and competition versions of
Leonard’s model, the equilibria are more stable for partial
resistance (¢ =< 0.8) than for immunity (+ = 1.0) (Fig. 4). This
effect is more pronounced with the competition version than with
the hard-selection version of the model. With the competition
version, stable polymorphisms are possible for partial resistance
genes that have gene-for-gene specificity, even when they have
no fitness cost and when s < 0.5. These results suggest that genes
for partial resistance (i.e., resistance that allows some sporulation
by avirulent parasite genotypes in infections on resistant plants)
should be common in gene-for-gene relationships.

For both versions of Leonard’s model and for both high and
low values of either s or ¢, no stable polymorphisms are possible
with very low values of k. In Leonard’s model, there is nothing
to prevent new virulence genes with little or no fitness cost from
becoming fixed in parasite populations within a few hundred years
after they arise. Such genes would go undetected not only for
lack of avirulence alleles to compare with them, but also because
the corresponding resistance genes eventually would be lost from
the host population as well. Without the resistance genes, there
would be no way to distinguish virulence and avirulence alleles.

DISCUSSION

The salient features of Leonard’s model uncovered by these
simulations are the unstable limit cycle and its variable position
depending on values of key parameters in the model. The position
of the unstable limit cycle can be used as a measure of the relative
stability of polymorphisms for resistance and virulence in the
model. The further the limit cycle is from the equilibrium point,
the more stable the polymorphism is.

Results of the simulations in this study emphasize the impor-
tance of parameter a in determining the stability of equilibria.
The value of @ can be used to change Leonard’s model from
one of hard selection in the parasite population to a soft-selection
model of fitness determined by direct competition between parasite
phenotypes. This change in the model has profound implications
for the stability of its polymorphisms.

Simulations with the hard-selection version of Leonard’s model
produced results consistent with the limited, earlier conclusions
from mathematical analyses. For example, both Fleming (4) and
Czochor (3) concluded that high disease severity destabilizes the
system when @ = 0. This also was demonstrated in this study
in simulations witha =0, s = 0.8, and ¢ < 0.1. These combinations
produced unstable limit cycles near the equilibrium point, which
means that any introduction of new resistance and virulence at
low frequencies leads to fixation of virulence rather than to a
stable polymorphism.

The hard-selection model is not consistent with observations
of natural host-parasite systems, because it indicates that stable
polymorphisms could not develop in environments highly condu-
cive to disease except for resistance genes with fitness costs greater
than 10%. There is little or no evidence of such high-cost resistance
genes in cultivated crops in which the effects of resistance genes
on yield is critically important. Use of race-specific resistance
in cultivated crops is not generally associated with detectable yield
decline, so we may assume ¢ < 0.05 (10,11). In a study designed
to measure cost of resistance, H. G. Welz, T. Miedaner, and
H. H. Geiger (unpublished data) found no detectable change in
frequency of resistance to powdery mildew in rye over six genera-
tions in the absence of disease. The lack of stability of poly-
morphisms in the hard-selection version of Leonard’s model
except at low disease severity or high cost of resistance makes
it unacceptable as an explanation of coevolution in natural host-
parasite systems.

The competition version of Leonard’s model, however, behaves
quite differently from the hard-selection model. It seems surprising

now that Sedcole (17), Fleming (4), and Leonard and Czochor
(13,14) paid so little attention to the situation of @ = k. In its
simplest sense, this situation makes the model equivalent to Groth
and Person’s (6) and Person et al’s (15) earlier parasite selection
model in which virulence has a fitness cost only when it is unneces-
sary, as it is on plants with no resistance. When a = k, stable
polymorphisms are possible in Leonard’s model, because for most
combinations of parameter values the unstable limit cycle is so
far from the equilibrium point that genes for virulence and
resistance will always enter the populations at frequencies within
the limit cycle.

The simulations reported in this study considered only the
special situation of a single parasite generation per host generation.
Thus, the possibility of variable costs of virulence over multiple
parasite generations in the growing season did not arise. Ob-
viously, this possibility will need to be considered in future work
with the model. This realization is an important outcome of the
study. With emphasis on soft selection based on competition,
the impact of changes in parasite population density assumes
greater significance for investigations of polymorphisms and their
stability in host-parasite systems.
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