Letter to the Editor

Threshold Criteria for Model Plant Disease Epidemics.
I1. Persistence and Endemicity

M. J. Jeger and F. van den Bosch

First author: Natural Resources Institute, Central Avenue, Chatham Maritime, Chatham, ME4 4TB, UK; and second author: Department
of Phytopathology, Agricultural University of Wageningen, P.O. Box 8025, 6700EE Wageningen, the Netherlands.
Current address of second author: Department of Mathematics, Agricultural University of Wageningen, Dreijenlaan 4, 6703HA

Wageningen, the Netherlands.

The research of F. van den Bosch was made possible by a fellowship of the Royal Netherlands Academy of Arts and Sciences.

Accepted for publication 15 September 1993.

Onstad and Kornkven (9) defined endemicity (of a plant disease)
as “the persistence or constant presence of a pathogen in an
ecologically proper spatial unit over many generations.” The con-
stant presence of a pathogen was effectively taken to mean a
nonzero density of infected (i.e., latent plus infectious disease),
but not postinfectious, plant tissue (or plant units) over the time
scale of model simulations performed with a supercomputer. This
definition appears conceptually novel and potentially useful, and
although the authors disavow an equilibrium approach, there are
clearly long-term properties of persistence to consider.

Persistence was positively associated with potential reproduc-
tion per pathogen (the product, iR, in which i is the length of
the infectious period and R is the rate parameter dimensioned
plants per infectious plant per unit time, not as defined by the
authors) and to increase with the sum, i + p (in which p is the
length of the latent period). Growth of host tissue increased the
likelihood of persistence as did variations in absolute host density
and in the value of iR within a particular simulation. Introduction
of a spatial scale was considered essential for deriving theorems
on persistence or endemicity, although the authors produced no
such theorem themselves.

In a subsequent paper, Onstad (8) concluded that total disease
(latent plus infectious plus postinfectious) increased under all
scenarios whatever the values for host density and iR and, thus,
by implication that no threshold exists in terms of disease. This
problem is discussed in detail in the accompanying paper (6).
Onstad argued compellingly that infected tissue (as defined above)
rather than diseased tissue provides the best indicator variable
for analyzing epidemic dynamics. Further probabilistic aspects
of epidemic spread, not directly relevant to the present letter,
also are considered in Onstad (8).

In this letter, the system of equations proposed by Onstad and
Kornkven (9) is analyzed to determine qualitative properties of
endemicity as it is defined. Most results can be obtained without
recourse to a supercomputer, in particular the relationship
between model parameters and endemicity.

THE MODEL

The model proposed by Onstad and Kornkven (9) consists of
four linked differential equations:

dS/dt=b— RI(S/N)

dL/dt= RI(S/N)— L/p (1)
dIjdt=L/p — I/i
dD/dt=I]i

in which L, I, and D are the densities (“the number of leaflets
per plant site”) of latent, infectious, and postinfectious diseased
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tissue within a constant spatial area; S is the density of susceptible
tissue; R, i, and p are as defined above and have essentially the
same meaning as in Vanderplank’s differential-delay equation
(5,6,11); b is a parameter describing host growth (assumed
positive); and N is total plant tissue density with N = § + L
+ I+ D. It follows that dN/d¢, the rate of change in total plant
tissue density, is equal to the constant parameter, b, and, hence,
unrealistically, that N increases linearly, with slope b, from an
initial population, N,. Rather than “plant tissue density,” we use
the term “population” throughout. We note that the increase in
newly infected tissue is proportional to the relative rather than
absolute density of susceptibles in the population, an assumption
that affects epidemic dynamics (4); in general, no absolute popu-
lation density (Ny) exists such that infecteds only increase if
S> Np.

Analysis. The qualitative dynamics of equation 1 can be ob-
tained by examining properties of particular trajectories. In par-
ticular, following the definition of persistence proposed by Onstad
and Kornkven (6), we can state that persistence occurs provided
L + I (“infecteds”) remains bound away from zero in the long
run. It is possible that infecteds may cycle either regularly or
irregularly without going to zero, but the possibility is not in-
vestigated here. We constructed differential equations for the new
variables (L + 1) and the proportion of the total population that
is susceptible (S/N), set these equations to zero, and solved for
the equilibrium values of each variable. We examined the conse-
quences for the original variables, L, I, D, and S, both as absolute
values and as proportions of the total population, N.

Considering infecteds,

d(L + D/dt=dL/dt+ dI/dt = RI(S/N)— I/i. 2)

Setting equation 2 to zero implies by simple algebra that (S/
N) = (iR)"". Thus, if L + I approaches a constant value, so
too does S/N, even though N is not a constant but increases
linearly. It then follows that the susceptible population must also
increase linearly if infecteds persist at an equilibrium value, be-
cause N increases at a constant rate, b. Because S must be less
than N, we immediately have the condition iR > 1 if disease
persists. We note that this threshold condition is exactly that
for the Vanderplank differential-delay equation (11) as discussed
in the accompanying paper (6) and is a necessary condition in
a situation in which the host population is increasing, demon-
strating the flexibility of linked differential equations (5).

Using the quotient rule, the proportion of the population that
is susceptible is

d(S/N)/dr = [(NdS/dr) — (SdN/dt)]/ N> ©))

Setting equation 3 to zero implies that d.S/d¢ = gS/N) dN/de.
Substituting in the expressions for S/N (ie., iR™') and dN/dt¢



(=b) gives dS/d¢ = b/iR, which is always positive if 56 > 0. Thus,
if disease persists, it follows that the rate of increase in susceptible
tissue, S, approaches the constant and positive value b/iR, which
is less than b.

Substltutmg in the equatlon for dS/d¢ from equation 1 and
substituting in S/N = (iR)™' gives

b—1I/i=b/iR.
Rearranging in terms of 7 gives the constant value
I"=(b/R(R—1) (C))
in which again iR > 1, and the superscript indicates an equilibrium
value. Also, b must be positive and greater than zero.
If I approaches the constant value I", and if L + I approaches

a constant value (the condition for per51stence), it follows that
L must also approach the constant value

L'=(@b/iR) R—1)
and thus
(I+ L)' = (b/iR)R — 1)(i + p), 5)

again stressing the two criteria, iR > 1 and b > 0, for persistence.
For large values of iR, (I + L) approaches the limit b(i + p)

We now derive an expression for each of the remaining
categories of disease. The solution for N, the total population,
is 81mply N = No + bt in which No ( SO + Ly + Io + D())
is the initial population at ¢ = 0 (the authors specify Dy = 0)
In the long term, as S/N approaches the constant value (iR) '
we have

S = N(S/N)= (N, + bt)/iR 6)
and by substitution
D=N—(S+ L+ I)=(G(R—-1)[N, + b(t—i—p)l/iR. (7)

S and D are explicitly time-dependent and do not approach equil-
ibrium values.
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Fig. 1. Disease progress (in absolute units) with time (days) according
to equation 1: L, I, D, and S represent densities of latent, infectious,
postinfectious, and susceptible tissue, respectively. Numerical solutions
were obtained with Runge-Kutta algorithms and a time step of 1 day;
initial values of L, I, D, and S were 20, 20, 20, and 500 units, respectively;
parameter values were R = 0.5 day !, p = 5 days, i = 20 days, and
b=5day".

Thus, the total amount of disease is
L+ T+ D=(GR— 1)(Ny+ by)/iR
giving the asymptotic proportion of disease as
(L+ 1+ D)/N=(GR—-1)/iR ®8)

with iR > 1. As noted above, persistence is not possible when
iR<1.

The simplicity of this asymptotic result (with host growth) is
marked by comparison with the results (without host growth)
obtained in the accompanying paper (6) but is a possible conse-
quence of the simple model of linear host growth.

The infecteds population can be expressed as a proportion of
the total population:

(I+ L)/ N=[(b/iR)(iR — 1)(i + p)/ (N t+ b1)]. €
This proportion approaches zero for large values of ¢ (which ap-
pears in the numerator), even though the denominator, the abso-
lute number of infecteds (equation 5), approaches a constant
nonzero value. As a check, it can be seen readily that the sum
of S/N (=iR™") and equation 8 equals 1 (equation 8 in fact can
be derived simply by substracting iR™' from 1).

A numerical solution of equation 1 is shown in Figure 1 and
illustrates the basic features of the analysis. After about 100 days,
the increases in D are effectively linear, as given in equation 7.
The amount of susceptible tissue initially falls sharply to a mini-
mum and then increases, eventually linearly, as given by equation
6. Both I and L increase to maxima early in the epidemic and
then decrease to approach the constant values given by equations
4 and 5. As t increases, D dominates the total population, N,
and the proportion of infecteds, (/ + L)/ N (equation 9), rapidly
approaches zero. A further numerical example (Fig. 2) shows
that the approach to linearity for D and S can be cyclical with
dampening waves.

Invasion criteria. We also note that the iR > 1 criterion that
is required for infecteds to persist can be derived from an invasion
argument. The rate of change of infecteds is given by equation
2. If disease can invade into the population from an initially
very small amount and if b > 0, then disease will be endemic.
For very small initial amounts of infecteds, we have § = N, so
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Fig. 2. Disease progress (in absolute units) with time (days) according
to equation 1: L, I, D, and S represent densities of latent, infectious,
postinfectious, and susceptible tissue, respectively. Numerical solutions
were obtained with Runge-Kutta algorithms and a time step of 1 day;
initial values of L, I, D, and S were 20, 20, 20, and 500 units, respectively;
parameter values were R = 1.0 day™', p = 3 days, i = 10 days, and
b=1day™".
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that d(L + I)/dr = (R — 1/i)I. The population of infecteds (/
+ L) will increase if R —1/i> 0, i.e. if iR > 1.

For the spatially structured model of Onstad and Kornkven
(9) (with j compartments and in which disease in each com-
partment is related to disease in the surrounding eight compart-
ments), the same analysis holds for Sj = Nj. The rate of change
of infecteds is summed over all compartments, j, to give

d 3L+ Ly/dt = (R—1/i) 3 I, (10)
and this leads to the same threshold criterion.

DISCUSSION

The model proposed by Onstad and Kornkven (9) (equation
1), although complex, has quite simple dynamics when restricted
to outcomes in which disease persists as defined. We imposed
the simple condition that the number of infecteds (/ + L) is con-
stant or approaches a constant positive value, implying that the
proportion of susceptibles (S/N) approaches the constant value
(iR)™', which in turn implies that iR > 1. Similarly, the persistence
of disease implies that the growth rate, b, is greater than zero.
Equation 5 encapsulates several of the major conclusions drawn
from Onstad and Kornkven’s original simulations (8,9). The
degree of persistence (higher values of 7+ L) is directly related
to values of growth rate (b) and to length of the infection cycle
(i + p). For persistence to occur, iR must be greater than one
and the higher the value of iR the larger the persisting densities
of infecteds.

The model also includes a provision for host growth and effec-
tively follows the procedure described by Jeger (5), in which host
growth is combined with an epidemiological model describing
the different disease categories, although the simple linear form
in equation 1 is not generally tenable as a biological property.
As might be expected, continuing host growth has a marked effect
in enabling disease to persist rather than become locally extinct.
Also, because the overall increase in the total host tissue is linear,
the only end result for an infected leaf is to become a removed
leaf, whereas some additional mortality might be expected.
Moreover, no qualitative analysis of the effects of introducing
additional growth and mortality factors was made. An approach
that can be followed in these respects is outlined by Chan and
Jeger (3). Introduction of more realistic representations of host
growth in Vanderplank’s differential-delay equation can lead to
decreased asymptotes (2), but the linked differential equation
approach offers more flexibility and tractibility. This was clearly
demonstrated by the simple derivation of the epidemic threshold
criterion in this paper, a criterion identical to that derived from
Vanderplank’s differential-delay equation in the accompanying
paper (6), which holds under conditions in which the host popu-
lation increases linearly. However, when other forms of host
growth (including mortality and replanting) are included, other
parameters enter into the threshold criterion (3).

The other two factors considered by Onstad and Kornkven
(9) were spatial dynamics and heterogeneity. Because plant popu-
lations are generally fixed positionally (except for natural or intro-
duced weed species that may be expanding their range), spatial
effects in plant disease epidemics may be expected to be important.
Theoretically, the asymptotic result established for Kermack and
McKendrick-type equations can be generalized to include spatial
(diffusion) effects, and an equivalent threshold for a pandemic
is obtained (1). Onstad and Kornkven (9) introduced a spatial
component into their linked differential equation model by dis-
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persing inoculum from a spatial unit, according to the product
RI (defined above), to its eight neighbors with a simple propor-
tionality rule. Because of this model structure, only numerical
analysis of spatial effects was possible. The definition of spatial
scale was reported to affect the persistence of disease, but com-
parisons with disease dynamics defined on a purely temporal scale
were not made. Techniques for modeling spatial spread of plant
disease, without the confining spatial grid representation used
by Onstad and Kornkven (9), are now well established (10).

May (7) looked at the effects of heterogeneity on the final
size of an epidemic through the variation in distribution of spatial
position across a plant population. As the coefficient of variation
of this distribution increased, there were large effects on the
asymptotic proportion of disease, especially at large values of
the basic reproductive rate—equivalent to the iR of this paper.
Onstad and Kornkven (9) took a different approach; rather than
looking at the effects of heterogeneity in plant populations on
epidemic processes, they looked at spatial variation in values (two)
of iR in a simple fashion. They concluded that heterogeneity
increased the likelihood of persistence compared with use of aver-
age values. This interesting result is of obvious relevance to studies
of disease in mixtures of different host genotypes and suggests
that in a closed system such mixtures may be counterproductive,
unless the long-term “persistent” disease level is suitably low.
Considerably more research is needed to understand the dynamics
of disease in heterogeneous populations, and modeling should
play a key role.

Numerical simulation approaches will rarely, however, allow
claims (such as “always”) to be made on the effects of hetero-
geneity. Further analytical modeling of stochastic effects, such
as those imposed by heterogeneity, are needed and provide, as
noted by Jeger (5), a major challenge to quantitative epidemiolo-
gists.

LITERATURE CITED

1. Bailey, N. T. J. 1975. The mathematical theory of infectious diseases
and its applications. Charles Griffin & Co Ltd, London.

2. Blaise, P. H., and Gessler, C. 1992. An extended progeny/parent
ratio model. 1. Theoretical development. Phytopathol. Z. 134:39-52.

3. Chan, M. S., and Jeger, M. J. An analytical model of plant virus
epidemics with roguing. J. Appl. Ecol. In press.

4. Getz, W. M., and Pickering, 1. 1983. Epidemic models: Thresholds
and population regulation. Am. Nat. 121:892-898.

5. Jeger, M. J. 1986. The potential of analytical compared with simula-
tion approaches to modelling plant disease epidemics. Pages 255-
281 in: Plant Disease Epidemiology: Population Dynamics and Man-
agement. K. J. Leonard and W. E. Fry, eds. Macmillan Publishing
Co., New York.

6. Jeger, M. J., and van den Bosch, F. 1994. Threshold criteria for
model plant disease epidemics. I. Asymptotic results. Phytopathology
84:24-27.

7. May, R. M. 1990. Population biology and population genetics of
plant-pathogen associations. Pages 309-325 in: Pests, Pathogens and
Plant Communities. J. J. Burdon and S. R. Leather, eds. Blackwell
Scientific Publications, Oxford.

8. Onstad, D. W. 1992. Evaluation of epidemiological thresholds and
asymptotes with variable plant densities. Phytopathology 82:1028-
1032.

9. Onstad, D. W., and Kornkven, E. A. 1992. Persistence and endemicity
of pathogens in plant populations over time and space. Phytopath-
ology 82:561-566.

10. van den Bosch, F., Zadoks, J. C., and Metz, J. A. J. 1988. Focus
expansion in plant disease. I. The constant rate of focus expansion.
Phytopathology 78:54-58.

I1. Vanderplank, J. E. 1963. Plant diseases: Epidemics and control.
Academic Press, New York.



