Letter to the Editor

Threshold Criteria for Model Plant Disease Epidemics.
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There is much interest in and debate on the “threshold criteria”
that determine whether a plant disease epidemic takes place. These
criteria are derived from simplified mathematical models of an
epidemic, rather than from actual observations. The justification
for using simplified models is that a sufficient portion of an epi-
demic’s characteristics are encapsulated to be relevant to real-
life situations. For example, the threshold criterion generally
accepted by plant disease epidemiologists states that for a poly-
cyclic epidemic to occur the value of the dimensionless product,
iR, must be greater than unity. The parameters i and R are defined
in Vanderplank’s (9) differential-delay equation:

dy,/dt= R(_)’,...p T y:—i'-p) (1= (1)

in which y is a measure of disease scaled in a range from 0 to
I (the number of infected units relative to the total number of
units), R is a constant rate parameter (the number of new infected
units per infectious unit per unit time), and p and i are the assumed
constant lengths of the latent and infectious periods, respectively.

Although conjectured by Vanderplank (9), it was Waggoner
(10) who provided a justification for the particular form of the
threshold criterion, i.e., the intrinsic rate of disease increase, r,
based on an exponential model of disease increase, is positive
only if iR > 1, in which i and R are as defined in equation
1(3).

Jeger (3), for the first time, provided a mathematical proof
that the final size of a plant disease epidemic defined by equation
1 (the “asymptotic value”) is given by the transcendental equation

L=1— Aexp(—iRL) 2)

in which L is the final fraction of infected units strictly less than
one and A is a constant dependant on initial disease (y,). The
threshold statement “iR > 1 for disease to increase from y,” was
then incorporated as an initial condition to determine a particular
value for 4. In the remainder of Jeger (3), only values of iR
> 1 were considered in developing applications in comparative
epidemiology, such as showing parallels with medical epidemiol-
ogy, the difference between epidemic and endemic disease, and
general population ecology. However, the condition used by Jeger
(3) was not generally valid,

Hau (1) compared the two versions of equation 2 with 4 =
I — yo and, as originally proposed by Jeger (3), 4 = (1 — y)
exp(yp). This showed that the latter criterion carries the implication
that for values of iR < I, the final amount of disease would
be less than the initial disease. Hau (1) also pointed out that
the assumption that disease would not increase for 0 < iR <
1 was not valid. Hau argued that disease would increase according
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to a geometric series reaching a final size of Y.. = ¥,/(1 — iR),
in which ¥j and Y.. are the initial and final numbers (not scaled)
of infected sites, respectively (throughout, we use the capital Y
notation to indicate absolute, or unscaled, units for the popu-
lation). May (6), in a broad synthesis of the similarity between
the plant and animal/medical literatures, derived equation 2 by
considering the Vanderplank equation as a special case of the
Kermack-McKendrick equation (5) and drew out a more general
framework for epidemic analysis. May (6) also pointed out that
if a quantity, R, (essentially the same as iR), is less than one
then there will be a “decaying chain of infection” that corresponds
to the convergent geometric series referred to by Hau (1).

It is clear from these contributions that where the amount of
disease is initially small relative to the total population, the final
amount of disease will be limited by values of iR < | and not
by the availability of healthy tissue. Conversely, the threshold
criterion of iR > 1 refers to a “runaway chain reaction, or
epidemic” (6) during what would be analogous to exponential
growth. Thus, Waggoner’s original derivation of the result (10)
is correct in stating there will be exponential disease increase
only if iR> 1.

GENERAL ASYMPTOTIC RESULTS
IN A FINITE PLANT POPULATION

An alternative to setting initial conditions to solve for the value
of A4 in equation 2 is to explicitly introduce initial disease. This
can be done either by introducing limits of integration directly
into solving equation 1 (which requires assumptions concerning
initial disease) or by introducing a more general function de-
scribing how an epidemic is initiated (Metz [7]). In either case,
the usual solution to equation 1, 4 = 1 — y,, can be obtained.
In this paper, we are interested in analyzing the general case
in more detail.

We first wrote Vanderplank’s equation (9) in the unscaled form:

d¥i/dt=(So— Y)[(R/So) (Yip — Yi-ip) T 8001 (3)

in which y, = Sy, is the number of diseased units, S, is the
initial number of healthy units in the population, S, — Y(1) is
the number of susceptible units in the population at time 7, and
() is a function giving the rate of increase due to initial infection
or another (e.g., external) source of inoculum, with the property
that o [* g(1)dt < oo

Suppose, for example, that at + = 0, the epidemic is started
from Z newly infected units (without specifying whether these
are part of the total population but with Z < ), then

0 t<p
g = (R/S)Zp=1<i+p (4).
0 t=i+p



The advantage of incorporating this function into the Vanderplank
equation is that it enables the introduction of initial disease and
solves directly for the constant, A4, in equation 2.

Separating variables and integrating

JaY,(So— Y) = (R/S) [(Yip = Yimip) di + (041 (5)
from which, following the procedures in Jeger (3), can be found
Yoo = Sy — Aexp [iR(Ye/ So) — &) 6)

in which g. is the value of fg(r)dt as t — co. The constant, A,
follows from considering the situation in which no epidemic
occurs, i.e., g(f) =0 for all 7 and as t > %0, Y. = 0.

Substitution in equation 6 shows that A = S, and, thus,

Yoo/ So =1 — exp[—iR(Ye/ So) — g0]- M

This is the most general form of the asymptotic value equation
for the Vanderplank equation. Special cases can be obtained by
making assumptions concerning 1) the form of g(¢) and 2) whether
infected individuals form part of the total population.

For example, in the special case of equation 4, g.. = iR(Z/So)
gives

Yo/ So =1 — exp[—iR(Yw/ So) — iR(Z]So)]
=1 — exp[—iR(Yw + Z)/So]- (®)

We next considered two cases that depend on whether Z is
part of the total population.

Case 1: Initial infections are part of the population. The total
population, N, is the sum of the initial infected individuals, Z,
plus the initial number of healthy individuals, S, i.e., N = Z
+ S,. The asymptotic value, L, is defined by

L= (Yu+ Z)/ N (with Ly = Z/N).

Substitution in equation 8 and rearrangement give the asymptotic
value equation

L=1—(~ Ly exp[—iR L/(1 — Ly)]. ®

The effect of iR and initial disease, Lo(=Z/N), on the final size
L, for this specification of total population, is shown in Figure 1.

Case 2: Initial infections are not part of the population. In
this case, N = S,, L = Y./ S, and trivially Ly = 0:

L=1—exp[—iR(Z/Sy)] exp(—iRL). (10)

The effect of iR and the quantity, Z/S,, on the final size, L,
for this specification of total population is shown in Figure 2.
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Fig. 1. The final size of an epidemic (L) in relation to the value of iR

for different values of initial disease, Ly (denoted on curves), according
to equation 9.

Clearly these two cases give quite different outcomes. In case
1, the epidemic is initiated within the population, whereas in case
2 infection can arise only from an external source, €.g., immigrant
spores or vectors. The relationship between the two cases can
be seen by considering the behavior as iR — 0.

In case 1, as exp[—iRL/(1 — Lg)] = 1 — iRL/(1 — L), we
find from equation 9 that L = L, + iRL, ie., L = Ly/(1 —
iR), which is the sum of a convergent geometric series.

In case 2, as exp[—iR(Z/Sy)] = [1 — iR(Z/S,)] and exp(iRL)
= (1 — iRL), we find from equation 10 that L = iR(Z/S,) +
iRL (ignoring the quadratic term), i.e., L = iR(Z/S,)/(1 — iR).
The term iRZ/ S, is simply the fraction of the population infected
due to the (external) source of infection and is directly comparable
to Ly and again is related to the convergent geometric series.

In Figure 3, the normal version of the asymptotic value equation
is plotted with 4 = 1 — L,, which for small values of Lg is
almost identical to Figure 1.

ASYMPTOTIC RESULTS FOR iR <1

Both Hau (1) and May (6) gave intuitive arguments for the
asymptotic result when iR < 1. We have demonstrated that in
a finite plant population, in which the availability of healthy tissue
is limiting to disease increase, there is a close relationship between
the asymptotic result and a convergent geometric series. We now
demonstrate the convergent geometric series result formally and
how it can be obtained with the techniques described by Jeger
(3). To show that the final level of disease is constrained by values
of iR < 1, we assume there is an infinite plant population.

Convergent geometric series. Suppose that in an infinite plant
population there is an initial disease population (which may be
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Fig. 2. The final size of an epidemic (L) in relation to the value of iR

for different values of the quantity, Z/S, (denoted on curves), according
to equation 10.
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Fig. 3. The final size of an epidemic (L) in relation to the value of iR

for different values of initial disease, L, (denoted on curves), according
to equation 2 with 4 = 1 — L,
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lesions, plant parts, or plants) at time ¢ = 0, which after a time,
P, produce infectious propagules (e.g., spores) and are, thus,
infectious lesions. After a further time, i, these lesions cease pro-
ducing spores and are postinfectious. Suppose that each lesion
leads to R, new lesions, for each unit of time the lesion is infectious;
then during the lifetime of that lesion, a total of iR lesions will
have resulted from each original lesion. These are the standard
characteristics of a polycyclic disease, with, in this case, the plant
population not limiting the increase in new lesions.

Initially suppose the number of lesions is given by Y,. At the
first generation, we have ¥, = ¥, + iRY, = Y, (1 + iR) lesions.
The second generation of lesions is produced by the infectious
lesions of the first generation (iR Yy):

Y,= Y, + iR (iRY,)
=Y, +iRY,+ (iR} Y,
=Yy [l +iR+ (iR?]

and in general at the nth generation
Y, =Y [1+iR+ (iR*+ ...+ (iR
As n approaches %, we have the infinite sum
Yo=Y [1+iR+ (iR’ + ..+ (iR +..] (11)

This infinite sum has two outcomes depending on whether iR
< 1loriR =1 If it is the latter, then Y., approaches %. Of
course, the assumption of an infinite population becomes
unsatisfactory when iR > 1. When iR < 1, the sum approaches
the value Y. = Y,/(1 — iR). The case when iR =1 is a special
one in that, from equation 6, Y, = (n + 1)Yy, i.e., Y increases
linearly. Also, the term denoting infectious lesions at the first
generation is iRY,, at the second (iR)’ Y, ..., and so on to
(iR)" Y, at the nth generation. If iR < 1, then the number of
infectious lesions decreases from the original number to approach
zero as n becomes large, confirming the observation of Jeger
(2) with respect to linked differential equations specifying disease
dynamics, i.e., that the equivalent to iR in such a system must
be strictly greater than one for the amount of infectious disease
to increase.

Solution of differential-delay equation. Suppose that disease
increases in an infinite population of plants, such that susceptible
plant tissue is not limiting. We denote by Y the number of infected
sites, i.e., an absolute rather than scaled measure of disease. The
differential-delay equation (equation 1) becomes

Yiip). (12)

On the assumption that ¥, = Y, at + = 0, this equation can
be integrated directly to give

dY,/dt=R(Y,, —

Y,— Y= R[[Y(1—p) — Y(t—i—p)]dr.

For iR < 1, and as t — oo, it follows, using Jeger’s method to
solve the integral on the right side, that

Yo — Yy = iRY...
From which, by rearranging,

Y. = Y,/(1 —iR), (13)
which is the sum of the convergent geometric series.

Suppose now that we wish to consider the more general case
by introducing the function g(¢) as for the finite population. Then

Yiip) + 8. (14

Integrating directly and allowing 7 — o,

d¥,/dt=R(Y,,—

Y= A+ iR(Yw + g) (15)
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in which 4 =0, if ¥, = 0 for g., = 0.
For the case in which g.. = iRZ (there is clearly no S),

Yo=iR Y., +iRZ=iRZ/(1 —iR), (16)

which is equivalent to the expression for case 2 in the finite
population.

DISCUSSION

It has been shown that in a plant population, effectively of
infinite size, in which the availability of host tissue is not limiting,
two quite distinct patterns of epidemic behavior for polycyclic
diseases are possible depending on whether iR < 1 or iR = 1.
In the former case, disease will approach an asymptotic value,
given by the sum of the geometric series Y,/(1 — iR). Because
the population size is infinite, the actual proportion of disease
is zero; thus, for iR < 1, there is no epidemic. In the latter case,
disease will increase to infinity. However, in the former case,
it is clear that considerable multiplication of disease can still take
place. For example, for a given Y, the asymptotic value, Ya,
can be made as large as possible simply by choosing values of
iR close to but less than unity. Nevertheless, the two qualitative
outcomes for such a model population yield a clear interpretation
of the threshold criterion. Again the difference is the finite increase
in the case in which iR < 1 to the runaway chain reaction in
the case in which iR > 1.

In a plant population of finite size, the literal meaning of the
threshold criterion is not obvious. When plant tissue is constrain-
ing disease increase, the difference in outcome between an iR
value of 0.99 is not qualitatively different from the outcome when
iR = 1.01 (Figs. 1-3). This situation is most apparent when the
amount of initial disease is relatively high. May (6) questioned
whether in these circumstances an epidemic had not already oc-
curred. This observation potentially denotes a distinction in per-
ception between plant disease and animal/ human epidemiologists.
Crops range from short-lived annuals to long-lived perennials
and are grown in environments in which seasonality may or may
not be present. Moreover, stratification occurs, in which epidemics
are occurring at different hierarchical levels. For example, if a
forest or a fruit tree is considered the unit of population, then
the appropriate time scale for epidemiological events may be over
10-20 yr. On the other hand, if the population of vegetative shoots
within a single tree is considered, then an annual epidemic of
afoliar fungal disease may occur over a time scale of a few months,
How an epidemic is defined depends very much on the scale
of resolution considered appropriate (8); expressions such as “an
endemic epidemic” are not self-contradictory but, in fact, point
out the futility, in some cases, of trying to distinguish between
the two categories of disease.

Threshold criteria derive naturally from simple models of plant
disease epidemics. That similar criteria can arise from both a
single differential-delay equation and from systems of differential
equations (4) attests to their robustness; in fact, both types of
model are special cases of the general Kermack and McKendrick
(5) epidemic model (6; F. van den Bosch and M. J. Jeger, unpub-
lished data). The criteria are useful in determining whether (under
idealized model conditions) an epidemic will result given a range
of assumptions concerning initial disease, etc., and, if so, an
estimate of the likely final size of the epidemic. The question
may legitimately be asked whether such criteria are relevant for
actual epidemics constrained by weather, seasonality, host growth
and immigration of fungal spores or virus vectors. In our view,
the answer is yes. For example, in this paper we have shown
how the introduction of a “source” function g(?) enables analysis
of the effects of the ways in which epidemics are initiated.

There are few key indicators that influence the ways in which
plant disease epidemiologists view epidemics. Threshold criteria
(and their analogues in wider population theory) are one such
set of indicators and rather than reject them as oversimplistic
or lacking realism, the effects of the above constraints should
be investigated, both experimentally and theoretically.
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