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ABSTRACT

Hughes, G., and Madden, L. V. 1993. Using the beta-binomial distribution to describe aggregated patterns of disease incidence. Phytopathology

83:759-763.

We discuss the use of the beta-binomial distribution for the description
of plant disease incidence data, collected on the basis of scoring plants
as either “diseased” or “healthy”. The beta-binomial is a discrete prob-
ability distribution derived by regarding the probability of a plant being
diseased (a constant in the binomial distribution) as a beta-distributed
variable, An important characteristic of the beta-binomial is that its
variance is larger than that of the binomial distribution with the same
mean. The beta-binomial distribution, therefore, may serve to describe
aggregated disease incidence data. Using maximum likelihood, we esti-

mated beta-binomial parameters p (mean disease incidence) and 6 (an
index of aggregation) for four previously published sets of disease incidence
data in which there were some indications of aggregation. Goodness-
of-fit tests showed that, in all these cases, the beta-binomial provided
a good description of the observed data and resulted in a better fit than
did the binomial distribution. The relationship between the parameters
of the beta-binomial distribution and those of variance-mean relationships
for aggregated disease-incidence data is shown.

The use of probability distributions to characterize spatial
patterns of disease is now a well-established technique in plant
disease epidemiology (4,10). For example (7,19,20,23), counts of
lesions per sampling unit can be grouped into frequency classes
and tested for goodness-of-fit to expected frequencies based on
discrete distributions such as the Poisson and the negative bi-
nomial. Given certain assumptions (10), the Poisson distribution
provides expected frequencies based on the supposition of spatial
randomness. Typically, however, the negative binomial distribu-
tion provides a better description of observed count data than
the Poisson. Because the negative binomial has a larger variance
than the Poisson distribution with the same mean, this is taken
as an indication of an aggregated (clustered, heterogeneous,
patchy) spatial pattern of disease units.

Alternatively, disease incidence (the proportion of plants or
plant units diseased [3]) may be assessed. For example, Cochran
(5) analyzed the incidence of tomato spotted wilt virus (TSWV)
infection of tomato plants in field trials in Australia. If the location
of a diseased plant is independent of the location of other diseased
plants and there is a constant probability, m, of a plant being
diseased, then the number of diseased plants, X, out of n in a
sample unit (such as a quadrat) has the binomial distribution

Pmb(){zx}=(§)w*{:—w)"—* (1)

in which Prob(-) represents probability and x takes the values
0, 1, 2, ..., n. The mean and variance of X are then nm and
nm(l — ), respectively. A test of goodness-of-fit of observed
frequencies to expected frequencies based on the binomial
distribution provides an indication of the homogeneity, or
otherwise, of the pattern of disease incidence. For the TSWV
data in Table 1, Cochran (5) gave x*> = 7.97, with 3 df, which
is just significant at P = 0.05.

Cochran (5) noted that the observed series differs from the
binomial in having too many groups with no diseased plants and
four or more diseased plants and too few groups with one, two,
or three diseased plants. This outcome is typical of an aggregated
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pattern of disease incidence. The purpose of this article is to
introduce to the plant pathology literature a probability distribu-
tion that may be appropriate for the description of such patterns.
We provide illustrations based on Cochran’s (5) data and some
other previously published analyses of virus disease incidence
(12-14). The results are discussed in relation to the analysis of
aggregated patterns of disease incidence based on variance-mean
relationships, suggested recently by Hughes and Madden (9).

MATERIALS AND METHODS

The beta-binomial distribution. Suppose that m in equation
1 is not constant but has the beta density

[« + B)
T(a)T(B)

(1 —m)f

in which 0 = 7 =< 1, @ and B are positive constants, and I'(*)
represents the gamma function. A great diversity of shapes may
be taken on by this probability density function (16). When either
or both of a and B8 are <1, the graph of the function (Fig. 1)
may be J-, L-, or U-shaped. When &« = B = 1, a uniform
distribution is obtained and when « and 8 are both >1, the graph
(Fig. 1) is unimodal. For « = B, the graph of the function (Fig.
1) is symmetrical about 7 = 0.5, otherwise it is skewed. Thus,
little limitation is being placed on the way that = may fluctuate
by the above assumption of a beta density function. Skellam
(21) showed that compounding the binomial distribution with
a beta density function for 7 leads to

Prob (X =x)= n P(“+ﬁ)P(G+I}P(B+n—x)
(x) M) T (B) T(a+ B+n) (2)

in which x takes the values 0, 1, 2, ..., n. This is often called
the beta-binomial distribution (6). It is one of a number of models
available for the analysis of binary data such as disease incidence
().
Clearly, the derivation of the beta-binomial is analogous to
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the derivation of the negative binomial distribution by com-
pounding the Poisson with a gamma distribution (15). The Poisson
distribution is the limiting form of the binomial distribution when
n is large and 7 is small (17). The negative binomial is, in fact,
the limiting form of the beta-binomial distribution when » and
a + B are large (17,21).

For the purpose of parameter estimation, it is convenient to
write

p=calatp)’ (3a)
and
0=(a+p)" (3b)

p being mean disease incidence (i.e., the expected value of the
now variable binomial parameter 7) and 6§ a measure of the
variation in . In this parameterization, the mean and variance
of X are np and np(1 — p) (1 + n) (1 + 8)”', respectively (8).
Thus, when 6 > 0, the variance of the beta-binomial distribution
is larger than the variance of the binomial with the same mean,
and the “pure binomial” is obtained when 8 = 0. On this basis,
the parameter 6 can be thought of as an index of aggregation.
A published algorithm (22) enables the estimation of p and 6
by maximum likelihood.

Data. Cochran’s (5) data comprise the number of TSWV-
infected tomato plants out of n = 9 in each of 160 quadrats.
A similar example is provided by the data of Marcus et al (14).
Their Figure 1 shows the location of orange trees infected with
citrus tristeza virus (CTV) in an orchard in central Israel. We
divided the field map into 84 “quadrats” of 4 rows x 3 columns
and counted the total number (1981 + 1982) of infected trees
out of a maximum of # = 12 in each quadrat.

In addition to these two single disease assessments, we examined
data from two disease epidemics. The first was reported by Mad-
den et al (13) in a study of the incidence of tobacco etch virus
(TEV) and tobacco vein mottling virus (TVMYV) in experimental
tobacco fields in Kentucky. At each of 18 disease assessments
made in field A-N-1985, the number of infected plants out of
n =40 in each of 75 quadrats was recorded. The second epidemic
from which data were examined was reported by Madden et al
(12) in a study of the incidence of maize dwarf mosaic virus
(MDMYV) in experimental maize field plots in Ohio. At each of
six disease assessments made in field P-3, the number of infected
plants out of n = 100 in each of 36 quadrats was recorded.

Analysis. Using the algorithm of Smith (22), we calculated
maximum likelihood estimates of p and 6 for each disease
assessment. The moment estimates p = m/n, § = [s* — np
(1 = p))/[7’p(1 — p) — 5%, in which m and s are the observed
mean and variance of the number of diseased plants per quadrat,
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Fig. 1. Graphs of the beta density function for various values of parameters
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respectively (8), were used as starting values for the maximum
likelihood estimation procedure.

We then calculated the expected frequencies for the beta-
binomial distribution with a method based on that suggested by
Skellam (21). The expected frequencies for the binomial dis-
tribution were calculated from equation 1 with = = p. After
pooling frequency classes so that expected frequencies were >5,
we calculated, wherever possible, the x* goodness-of-fit statistic
for the observed data and both the binomial and beta-binomial
distributions in turn. For the former, the number of degrees of
freedom is the number of frequency classes, after pooling, minus
two; for the latter, number of classes, after pooling, minus three.

RESULTS

Tomato spotted wilt virus. The maximum likelihood estimates
of the beta-binomial parameters were p = 0.181 (standard error
[SE] = 0.0119) and 5 = 0.053 (SE = 0.0204). It is clear that
the description of the frequency distribution of diseased plants
provided by the beta-binomial was a significant improvement over
that of the binomial distribution (Table 1). For the beta-binomial
the goodness-of-fit x* = 0.10 with 3 df (P > 0.99). For similar
data presented by Bald (2), the binomial distribution appeared
to provide an adequate description of the frequency distribution
of disease incidence, suggesting a random pattern of diseased
plants. In such a case, the use of the beta-binomial distribution
would be superfluous.

TABLE 1. Observed and expected (binomial and beta-binomial) fre-
quencies for the tomato spotted wilt virus data reported by Cochran (5)

Number of Expected Expected
diseased plants Observed binomial beta-binomial
per quadrat frequency frequency® frequency®

0 36 26.45 36.56

1 48 52.70 47.69

2 38 46.67 37.51

3 23 24.11 22.16

4 10 8.00 10.48

5 3 1.77 4.02

6 1 0.25 1.23

7 1 0.03 0.29

8 0 0.00 0.05

9 0 0.00 0.00

*Frequency classes 4-9 were pooled for calculation of the x* statistic
(described in text).

® Frequency classes 5-9 were pooled for calculation of the x* statistic
(described in text).
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Fig. 2. Frequency distribution of orange trees infected by citrus tristeza
virus in 84 quadrats with 12 trees per quadrat. Observed (Obs.) and
expected frequencies for the binomial (Bin.) and beta-binomial (BBD)
distributions are shown. Estimated parameters and goodness-of-fit statis-
tics are given in the text.



Citrus tristeza virus. The maximum likelihood estimates of the
beta-binomial parameters were p = 0.173 (SE = 0.0203) and 6
=0.271 (SE = 0.0628). The observed frequencies and the expected
frequencies for both the binomial and beta-binomial distributions
are shown in Figure 2, which shows that the binomial distribution
tended to underestimate the observed frequencies of diseased
plants in the tails of the distribution and overestimate those in
the center. The beta-binomial distribution again provided a much
better description of the frequency distribution of diseased plants
than the binomial. For the former, the goodness-of-fit x* = 4.04,
with 4 df (P = 0.40), and for the latter, x> = 63.1, with 3 df
(P < 0.001). We also found that dividing up the field map into
42 “quadrats” of 4 rows X 6 columns (so that n = 24) had very
little effect on the estimates of the beta-binomial parameters, which
were, in this case, p = 0.173 (SE = 0.0259) and = 0.261 (SE
= 0.0694).

Tobacco etch virus and tobacco vein mottling virus. We made
separate maximum likelihood estimates of p and 0 for each disease
assessment, wherever possible (at disease assessments 1-3, the
data comprise mostly zeros, resulting in failure of the damped
Newton-Raphson procedure used in the maximum likelihood
estimation subroutine). Mean disease incidence for both viruses
combined (p) increased over time, in a sigmoid fashion (found
also in [13]), while # increased to a peak at around p = 0.5,
then decreased (Table 2). The x* goodness-of-fit statistics (Table
2) indicated the improved description of the frequency distribution
of diseased plants provided by the beta-binomial, compared to
the binomial distribution, over the entire course of the epidemic.
Figure 3 shows the observed and expected frequencies at two
levels of mean disease incidence. Comparison of the observed
frequencies with the binomial expected frequencies clearly indi-
cates the aggregated nature of disease incidence at both assess-
ments. In both cases, a good description of the observed data
was provided by the beta-binomial expected frequencies.

Maize dwarf mosaic virus. We again made separate maximum
likelihood estimates of p and 8 for each disease assessment (Table
3). Mean disease incidence (p) increased over time, in a sigmoid
fashion (found also in [12]), while # increased to a peak and
then decreased (Table 3). In this case, the peak value of § appeared
to occur at a value of p below 0.5. The x* goodness-of-fit statistics
(Table 3) indicated, as before, that the beta-binomial distribution
described the observed frequency distributions of disease incidence
better than the binomial distribution.
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Fig. 3. Frequency distribution of tobacco plants infected by tobacco etch
virus and tobacco vein mottling virus at A, 23 and B, 42 days in 75
quadrats with 40 plants each. Observed (Obs.) and expected frequencies
for the binomial (Bin.) and beta-binomial (BBD) distributions are shown.
For presentation purposes, frequency classes 12-40 (12+) were pooled
at day 23 and 0-13 (—13) at day 42. Furthermore, for day 42, frequencies
are given for groups of three classes, and the midpoints are shown (15
for classes 14-16, 18 for classes 17-19, etc.). Estimated parameters and
goodness-of-fit statistics are given in Table 2.

TABLE 2. Beta-binomial parameter estimates and goodness-of-fit statistics for the tobacco etch virus and tobacco vein mottling virus epidemic

in tobacco field A-N-1985 reported by Madden et al (13)

Goodness-of-fit"

Diseiise Parameter estimfitcs‘ Binomial® Beta-binomial
assessment Day P SE 0 SE x? df P X df P

1 0 0.0007 -

2 2 0.0013 -

3 7 0.0020 .

4 9 0.0040 0.00124 0.0056 0.00667 - -

5 12 0.0086 0.00205 0.019 0.0102 - -

6 14 0.012 0.0023 0.010 0.0071 - -

7 16 0.023 0.0035 0.021 0.0098 5.2 1 0.022 0.4 1 0.52
8 19 0.063 0.0060 0.023 0.0092 14.5 4 0.006 4.1 4 0.40
9 21 0.081 0.0070 0.026 0.0099 11.0 4 0.027 1.8 4 0.77
10¢ 23 0.112 0.0088 0.042 0.0101 31.5 5 <0.001 6.2 5 0.29
11 26 0.156 0.0107 0.049 0.0113 49.5 6 <0.001 7.0 7 0.43
12 28 0.235 0.0142 0.067 0.0156 71.5 6 <0.001 7.6 7 0.37
13 30 0.323 0.0170 0.082 0.0179 83.6 7 <0.001 7.2 6 0.30
14 33 0.443 0.0204 0.113 0.0230 127.9 7 <0.001 39 7 0.79
15 35 0.550 0.0211 0.123 0.0249 133.9 7 <0.001 5.8 7 0.56
16 37 0.628 0.0192 0.103 0.0222 144.7 7 <0.001 8.4 7 0.30
17 40 0.648 0.0183 0.092 0.0207 69.4 7 <0.001 6.5 6 0.37
18¢ 42 0.668 0.0176 0.086 0.0197 77.6 7 <0.001 2.9 6 0.13

* Parameter estimates could not be made from the data for disease assessments 1-3. ) )
®Degrees of freedom (df) were determined by pooling frequency classes so that expected frequencies were >5. There were insufficient df for the

goodness-of-fit test at disease assessments 4-6.
© Calculated from equation I with = = p.
4 Described in Figure 3.
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DISCUSSION

When virus infection occurs in an aggregated pattern, the
binomial distribution provides an inadequate description of the
frequency distribution of diseased plants per quadrat. On the
basis of results from the pathosystems used as examples, it is
clear that the description provided by the beta-binomial dis-
tribution is a significant improvement. This is true over a range
of combinations of quadrat size and number of quadrats and
at different levels of mean disease incidence. The cost of this
improvement is that, by comparison with the binomial
distribution, an additional parameter must be estimated at each
disease assessment.

In a previous paper (9), we investigated the relationship between
the variance, v [=var(w)], and mean, p (=7), for aggregated
disease incidence data. Good descriptions of epidemiological data
were provided by the relationships

v=alp(l — p)I’ (4a)
and
v=ap®'(1 — p)»? (4b)

in which a and either b (equation 4a) or b, and b, (equation
4b) are parameters to be estimated. The curve of equation 4a
is symmetrical about a maximum at p = 0.5, whereas that of
equation 4b may be asymmetrical. Equations 4a and 4b are of
interest in the present context because they represent assumptions
about the first two moments of the distribution of (the now
variable)  that are satisfied by beta distributions B(a,) in which

a={[Alp)a] — l}p (5a)

and
B={lfip)/a]l — 1} (1 — p). (5b)

In the case of equation 4a, f{p? = [p(1 — 2;' ~* whereas in
the case of equation 4b, fip) = p' ~*'(1 — p)' ~*%

For clustered binary data, constant 0 is sometimes assumed
(e.g., [18]), leading to v = ap(l — p). The parameters of the
corresponding beta distribution are now given by equations 5a
and 5b, with f{p) = 1 (1). This situation is analogous to that
envisaged by Waggoner and Rich (24) when they described disease
progress by a logistic equation modified to take account of an
aggregated pattern of propagules by incorporation of a (constant)
negative binomial parameter, k. The equivalent equation in-
corporating the beta-binomial parameter 6 could describe the rate
of increase of disease incidence in, for example, a virus-vector-
host pathosystem in which the vector had an aggregated pattern.
However, on the basis of Tables 2 and 3, it seems as unrealistic
to assume constant 6 over a wide range of p as it does to assume
constant k with changing disease intensity (10).

Empirically, the variation of @ with p seems to be characterized
by a curve with a single maximum at 0 < p < 1 (Tables 2 and
3). Substituting equations 5a and 5b into equation 3b gives

6 (6)

=__a

/o) —a
which has this shape when b > 1 in equation 4a, in which case
the maximum value of 6 occurs at p = 0.5, or b, and b, > 1
in equation 4b, in which case the maximum value of @ occurs
at p = (1 — b)/[(1 — b)) + (1 — by)]. Values of b and b, are
>1 for aggregated disease incidence data, but the value of b,
may vary widely (9). Values of b, < | may serve to provide
an empirical description of some variance-mean relationships, but
those relationships do not provide useful information in the
context of equation 6.

For the tobacco virus disease epidemic described in Table 2,
in which 6 appears to be at a maximum at about p = 0.5, equation
4a provided a good description of the variance-mean relationship
(@ =0.16, b = 1.29; * = 0.995) (found also in [9]). For the
maize virus disease epidemic described in Table 3, in which @
appears to be at a maximum at 0 < p < 0.5, equation 4b (&
= 0.08, b, = 1.31, b, = 1.77; ¥ = 0.887) provides a better
description of the variance-mean relationship than equation 4a
(@ = 0.05, b = 1.20; 7 = 0.753). The estimated coefficients of
equation 4b for the MDMYV epidemic correspond to maximum
0 at p = 0.29, which is consistent with Table 3.

The correspondence between the beta-binomial distribution and
the variance-mean relationships described by Hughes and Madden
(9) provides a basis for reducing, from two at each disease assess-
ment, the number of parameters required to describe an epidemic.
First, temporal variation in p can usually be characterized by
a nonlinear disease progress curve requiring the estimation of
just three parameters (the initial and maximum [asymptotic] levels
of disease and a rate parameter) for an epidemic (11). Second,
variation in @ may be described in terms of p (equation 6), requiring
the estimation of a further two parameters (a2 and b) when equation
4a is appropriate or three (a, b;, and b,) when equation 4b is
appropriate. Thus, a total of only five or six parameters may
need to be estimated to describe temporal and spatial variation
in disease incidence during an epidemic in terms of the beta-
binomial distribution.

Statistical descriptions of spatial pattern do not by themselves
provide an explanation of the mechanisms responsible for the
pattern (3,7). They do, however, have some important uses. One
is in identifying the appropriate statistical model to use for the
analysis of data, and another is in the design of sampling proce-
dures. The use of the beta-binomial distribution in these appli-
cations will be discussed in future reports.
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