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ABSTRACT

Hudelson, B. D., Clayton, M. K., Smith, K. P., and Upper, C. D. 1993. Modeling of superimposed spatial patterns of bacterial brown spot of

snap bean. Phytopathology 83:430-438.

Snap bean plants within seven-row segments that ranged from 30 to
108 m were sampled using a 2,4-systematic sampling plan: Two adjacent
plants were sampled and evaluated for bacterial brown spot, four adjacent
plants were skipped, two adjacent plants were sampled, etc. This sampling
plan was developed using a priori knowledge of disease patterns in 5-m
row segments. Every leaflet on every sampled plant was assessed for
bacterial brown spot, and disease on these plants was quantified as the
proportion of diseased leaflets per plant. Arcsine square root-transformed
disease-incidence values were analyzed for spatial patterns using auto-
regressive integrated moving average (ARIMA) modeling. Three of seven
data sets were described by a generalized ARIMA(1 0 1) model. These

Additional keywords: adaptive sampling, Pseudomonas syringae.

data sets exhibited the expected patterns of disease, based on previous
descriptions of disease patterns in 5-m row segments. Of the remaining
four data sets, one was modeled by an ARIMA(I 0 2) model, two by
an ARIMA(I 0 3) model, and one by an ARIMA(1 0 4) model. These
data sets exhibited the expected patterns, as well as additional patterns
that recurred at intervals of six to 11, 12 to 17, or 18 to 23 plants,
respectively. Significant autocorrelations at distances of six to 23 plants
were also found in residuals from 24 of 55 5-m row segments evaluated
for bacterial brown spot and modeled using ARIMA models. These
patterns appear to occur frequently in commercial snap bean fields.

In the past decade there has been substantial interest in spatial
patterns of plant disease, pathogens, and development of disease
in time and space (5,6,8). From the body of knowledge gained
from this research, these general conclusions can be drawn: 1)
Disease rarely is arranged randomly in space. 2) Current method-
ology in plant pathology literature is sufficient to determine
whether disease is arranged randomly or nonrandomly in space
but is less well suited for quantifying or modeling spatial patterns.
There have been efforts to adapt existing statistical techniques
to quantify and model spatial patterns (7,13,17,18). These efforts
have clearly demonstrated the importance of such studies, but
also that the utility of existing methods for quantifying spatial
patterns is limited. 3) Applications of methodology for deter-
mining the presence or absence of multiple spatial patterns at
different scales also are limited. We are aware of only a limited
number of reports that have suggested there can be more than
one pattern at two different scales in a single field (11,14,15,21).

In recognition of these concerns, we began developing a strategy
that would be capable of detecting and modeling spatial patterns.
The strategy that we developed in our studies of spatial patterns
of bacterial brown spot is called adaptive sampling. This strategy
is designed to detect and describe multiple spatial patterns that
may occur at several different scales within a single field. Adaptive
sampling involves the iterative application of two basic steps:

Step 1: Sampling and description of spatial patterns within an
area of defined size in a field.
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Step 2: Use of spatial-pattern information obtained in step | to
develop new sampling plans for sampling larger areas
in the field.

In our work with bacterial brown spot, the first step of the
first iteration of the process was to search for disease patterns
within short-row segments (approximately 5 m) (11). Nonrandom
brown spot variability in these row segments occurred on at least
two scales. The most prominent disease pattern could be described
as a positive correlation between disease incidence on adjacent
plants that corresponded to a slowly undulating change in disease
levels within row segments. In addition to this dominant pattern,
a component of negative correlation gave a jagged appearance
to graphs of disease vs. distance. The disease patterns detected
in short snap bean-row segments were described using ARIMA
modeling (3,10,11)—a technique that is prevalent in the statistical
time series literature. For 35 of the 38 samples discussed in our
previous paper (11) and for 17 of 17 5-m samples collected sub-
sequently, we found that bacterial brown spot spatial patterns
could be described using a generalized ARIMA(1 0 1) model

(11):
Y=¢y Yoy te—0yp16+8

Y, and Y, | are the proportions of diseased leaflets associated
with the plants at positions ¢ and t—1 in the row and transformed
using an arcsine square root transformation. The terms ¢, and
€ are random errors (with a variance of o?) associated with
the plants. The terms ¢y, and Oy, are constants, similar to
regression coefficients, that quantify the relationship between the
Ys and the es. Finally, 8 is a constant related to the mean level
of disease in the row segment. In the generalized ARIMA(I 0



1) model, ¢y,Y,—, describes the slowly undulating change in
disease levels within a row; 6y ¢, describes disease patterns that
give graphs of disease vs. distance their jagged appearance. In
all of our samples in which brown spot patterns could be described
by a generalized ARIMA(1 0 1) model, 0 = ¢y; = 1 and 0
= 0y, = ¢y,. Considering the frequency with which this model
occurred, we feel that a common underlying mechanism might
be involved in the development of these brown spot patterns.

The second step of adaptive sampling involved considering how
brown spot patterns described using a generalized ARIMA(1 0 1)
model could be used to develop sampling plans needed to detect
patterns at larger scales. The work of lachan (12) indicated that
systematic samples should be more efficient than random samples
for estimating means from positively autocorrelated processes
(such as the ones we had observed). We considered the possibility
that systematic samples might also be useful for detecting and
modeling spatial patterns.

The general class of systematic samples we investigated were
A, B-systematic samples, in which 4 and B are positive integers
and B is an integer multiple of 4. The choice of 4 and B in
our work was somewhat arbitrary. In most instances, however,
constraints on the time and resources available to collect a sample,
as well as the size of the population to be sampled, dictate the
limits of the magnitude of A and B. Theoretically, a priori knowl-
edge of patterns in a population to be sampled could be used
to tailor design an optimal A, B-systematic sample or group of
A, B-systematic samples to detect other patterns. We are unaware
of any published work in this area.

Logistically, an A,B-systematic sample involves sampling a
group of A adjacent plants and evaluating these plants for a
characteristic of interest (in our case bacterial brown spot disease
incidence), skipping the next B adjacent plants, evaluating the
next A adjacent plants, etc. The measured values for each group
of A adjacent plants (or an appropriate transformation thereof)
are averaged to yield a single data point for each group of A

TABLE 1. Characteristics of fields from which 2,4-systemic samples and
total-census samples were collected

Field Nearest Field area

number County village® (ha) Cultivar®
11 Columbia Arlington 4 BBL 109
14 Waushara Almond 64 BBL 94
15 Columbia Arlington 8 BBL 109
18 Green Lake Markesan 14 Peak
19 Green Lake Fairwater 312 Peak
20 Green Lake Fairwater 60 Peak
22 Columbia Rio 52 Peak

*In Wisconsin.
"BBL = Bush Blue Lake.

plants sampled. Data from samples of this type are amenable
to analyses such as runs tests, autocorrelation analysis, and
ARIMA modeling. More importantly, however, the type of
ARIMA model that will describe disease patterns in an A4, B-
systematic sample can be predicted from statistical theory, based
on knowledge of underlying patterns. For example, as noted
above, bacterial brown spot patterns observed in short-row
segments (5 m) were described by a generalized ARIMA(I 0 1)
model. One can show that an A4, B-systematic sample collected
from the same row should also be well described by a generalized
ARIMA(I 0 1) model if no additional brown spot patterns are
present in the systematic sample (20,22, B. D. Hudelson, unpub-
lished data). Deviations from this predicted model would be an
indication of the presence of additional, previously undescribed
brown spot patterns. Similar predictions are possible for more
complex ARIMA processes (20,22, B. D. Hudelson, unpublished
data).

The work we describe represents the application of a 24-
systematic sampling plan (i.e., an A, B-systematic sampling plan
with 4 =2 and B = 4) to elucidate bacterial brown spot patterns.
This work is an example of step 1 of the second iteration of
adaptive sampling for bacterial brown spot of snap beans.

MATERIALS AND METHODS

Commercial snap bean fields. 24-systematic samples were
collected, over a 3-yr period (1987-1989), from seven commercial
snap bean fields, each planted with one of three snap bean cultivars
and located in three diverse areas of Wisconsin. More detailed
information on the characteristics (location, cultivar, area, etc.)
of these fields is provided in Table 1.

Sampling and disease assessment. Within each snap bean field,
a 2,4-systematic sample was collected from within a single-row
segment. A 2,4-systematic sample involved sampling two adjacent
plants and evaluating those plants for bacterial brown spot,
skipping four adjacent plants, sampling two plants, etc. The
leaflets of each selected plant were evaluated for the presence
or absence of bacterial brown spot as described previously (11).
In fields with normal snap bean populations, the row segments
sampled were 30- to 45-m long. In one field with a light stand,
the row segment was 108-m long. Samples collected during 1987,
1988, and on 24 July 1989 (samples 11.24, 14.24, and 15.24 in
Table 2) were assessed by two workers. For these samples, the
individual who assessed a given plant was recorded. One worker
assessed all other samples.

In addition to 2,4-systematic samples, bacterial brown spot was
evaluated on all plants in one or more short-row segments
(approximately 5 m) from within the same row segment from
which the 2,4-systematic sample was collected (fields 15, 18-20,
and 22) or from an adjacent row (fields 11 and 14). Total-census

TABLE 2. Summary of characteristics of 2,4-systematic and total-census samples

Sample Sample
2,4-Systematic Date Length Number Total-census Date Length Number
sample® collected (m) of plants sample collected (m) of plants
11.24 7/21/87 45 678 11.1 7/22/87 5.0 81
11.2 7/22/87 5.0 82
14.24 8/24/88 36 492 14.1 8/24/88 5.0 100
15.24 7/24/89 30 684 15.1 7/24/89 4.2 116
15.2 7/24/89 3.6 96
15.3 7/24/89 4.2 100
15.4 7/24/89 ND® 67
18.24 8/09/89 108 630 18.1 8/09/89 6.8 111
19.24 8/30/89 41 594 19.1 8/30/89 ND 100
20.24 9/21/89 45 582 20.1 9/21/89 7.0 92
22.24 7/17/89 30 858 221 7/17/89 2.5 70

*Numbers to the left of the decimal point refer to the field from which 2,4-systematic and total-census samples were collected. The number 24
to the right of the decimal point denotes a 2,4-systematic sample. Single digits to the right of the decimal point distinguish total-census samples
collected from the same field. Data sets 15.3, 154, 18.1, and 20.1 were collected from the same row segments from which the corresponding

2,4-systematic samples were collected.
*Not determined.
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samples were collected to verify that the underlying pattern of
disease could be described by a generalized ARIMA(1 0 1) model.
Total-census samples were assessed by one worker, as described
previously (11). Detailed characteristics of the 2,4-systematic
samples and total-census samples are provided in Table 2.

Data analysis. Total-census data from short-row segments were
analyzed as described previously (11). Disease associated with
each plant was expressed as the proportion of diseased leaflets
per plant; proportions were transformed using an arcsine square
root transformation to stabilize variance (19). The resulting
transformed disease-incidence values were used in subsequent
runs, autocorrelation, and ARIMA analyses.

The treatment of data from 2,4-systematic samples was more
complex. Trained assessors had a high probability of correctly
identifying bacterial brown spot. Thus, the assessed number of
diseased leaflets varied little between assessors. However, deciding
whether an emerging (typically undiseased) leaflet had attained
sufficient size to be included in the tally did vary between assessors,
which led to variability in the total number of leaflets per plant
evaluated by different assessors. Therefore, for 2,4-systematic
samples assessed by more than one worker, an attempt was made
to correct the data for effects resulting from assessor differences.

In 1987 and 1988 (2,4-systematic samples 11.24 and 14.24),
data were first transformed using an arcsine square root trans-
formation. Such a transformation is recommended for proportion
data to stabilize variance (19). An assumption of homogeneity
of variance is inherent in both the regression technique we used
to correct data for assessor differences (as described below) and
for ARIMA modeling we used to detect spatial patterns.

Resulting transformed disease-incidence values of each pair of
adjacent plants were averaged. An assessor’s average transformed
disease-incidence values were standardized by subtracting the
mean average transformed disease incidence for that assessor.
Finally, the largest mean average transformed disease incidence
obtained among the assessors was added to all standardized
average transformed disease-incidence values. This yielded non-
negative values. These values (Z,) were used in runs, autocorrela-
tion, and ARIMA analyses.

In 1989, only a single 2,4-systematic sample was evaluated by
more than one assessor (sample 15.24). To correct this sample
for assessor differences, a group of 14 bean plants was evaluated
for brown spot by both assessors. In a regression analysis, the
total number of leaflets evaluated by one assessor was used as
a predictor for the total leaflets evaluated by the second assessor.
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Fig. 1. 2,4-systematic samples exhibiting the spatial patterns of brown spot expected from patterns detected in total-census data sets but exhibiting
no additional patterns. A, Data set 15.24 collected 24 July 1989 from a 8-ha snap bean field (cv. BBL 109) near Arlington, WI. Data modeled
using an ARIMA(0 0 0) model. B, Data set 22.24 collected 17 July 1989 from a 5.2-ha snap bean field (cv. Peak) near Rio, WI. Data modeled
using an ARIMA(1 0 1) model. C, Data set 18.24 collected 9 August 1989 from a 14-ha snap bean field (cv. Peak) near Markesan, WI. Data

modeled using an ARIMA(0 1 1) model.
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The resulting prediction equation was used to correct the total
number of leaflets associated with those plants in the 24-
systematic sample evaluated by the first assessor. The resulting
corrected total-leaflet values were used to calculate corrected
proportions of diseased leaflets per plant, which were in turn
transformed using an arcsine square root transformation. The
transformed disease values associated with adjacent plants were
averaged to yield corrected average transformed disease values
(Z;) used for subsequent runs, autocorrelation, and ARIMA
analyses.

Runs, autocorrelation, and initial ARIMA analyses for 2,4-
systematic samples were conducted, as detailed previously (11),
using MINITAB, release 5.1.1 (The Pennsylvania State University,
University Park). The SCA Statistical System, release 111.3.2
(Scientific Computing Associates, DeKalb, IL), was used to
confirm the ARIMA models computed using MINITAB. For
graphic illustration (Figs. 1 and 2), the inverse of the original
transformation (i.e., the squared sine transformation) was applied
to the corrected average transformed disease values to yield values
that ranged between zero and one.

RESULTS

Total-census samples. Results from the analyses of total-census
samples collected in conjunction with 2,4-systematic samples are
presented in Table 3. Data sets 11.1 and 11.2 have been described
previously (11). The 11 samples had mean disease values ranging
from 2.7 (sample 15.2) to 60.9% (sample 20.1). In runs analyses,
six of the samples had fewer runs than expected (four with Z
values of —1.96 or less [ P = 0.05]). Two samples had more runs
than expected but not significantly so (P = 0.63 and P = (.84,
respectively). For the remaining three samples, a runs analysis
could not be performed because the median disease value for
these samples was zero.

Sample autocorrelation functions (3,10), ry(s), in which s is
the lag value, also varied from sample to sample. Five of the
I1 samples had sample autocorrelation functions that had no
values of ry(s) (1 = s = 20) that lay outside a 95% confidence
interval (CI) calculated under the assumption of a random disease
pattern. These samples, along with a sample that had a single
value of ry(s) that lay outside a 95% CI, were adequately described
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Fig. 2. 2,4-systematic samples exhibiting the spatial patterns of brown spot expected from patterns detected in total-census data sets as well as
exhibiting additional patterns. A, Data set 19.24 collected 30 August 1989 from a 31.2-ha snap bean field (cv. Peak) near Fairwater, W1. Data
modeled using an ARIMA(0 1 2) model. B, Data set 11.24 collected 21 July 1987 from a 4-ha snap bean field (cv. BBL 109) near Arlington,
WI. Data modeled using an ARIMA(1 0 4) model. C, Data set 14.24 collected 24 August 1987 from a 64-ha snap bean field (cv. BBL 94) near
Almond, WI. Data modeled using an ARIMA(1 0 3) model. D, Data set 20.24 collected 21 September 1989 from a 60-ha snap bean field (cv.

Peak) near Fairwater, WI. Data modeled using an ARIMA(1 0 3) model.
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TABLE 3. Results from ARIMA modeling, autocorrelation analyses, and runs analyses of bacterial brown spot incidence from total-census data

sets collected in conjunction with 2,4-systematic samples

Mean disease ARIMA by Oy, al Significant Runs-test
Data set” (%) model estimate” estimate” estimate” ACF lags® Z-value
11.1 25.4 000 0 0 0.056 NONE —2.48
(ND) (ND)
11.2 34.2 101 0.941 0.648 0.043 1-7,9,19 —4.22
(0.056) (0.118)
14.1 58.3 000 0 0 0.021 NONE —2.41
(ND) (ND)
15.1 3.0 000 0 0 0.021 NONE CND*
(ND) (ND)
15.2 2.7 100 0.220 0 0.017 1,8 CND
(0.101) (ND)
15.3 38 000 0 0 0.024 14 CND
(ND) (ND)
15.4 6.1 000 0 0 0.029 NONE —0.12
(ND) (ND)
18.1 29.6 100 0.388 0 0.049 1,2 —3.27
(0.088) (ND)
19.1 373 011 1 0.875 0.032 1,2,4-7,11 +0.20
(ND) (0.048)
20.1 60.9 011 1 0.899 0.048 1,3,49,13 —1.47
(ND) (0.044)
22.1 33.8 000 0 0 0.050 NONE +0.48
(ND) (ND)

“Numbers to the left of the decimal point refer to the field or area within a field from which the data sets were collected. Numbers to the right
of the decimal place distinguish between data sets collected from the same field or area within the field.

"Parameter estimates for the generalized ARIMA(I 0 1) model (11). A ¢y, value of | implies that differenced data were modeled. Numbers in
parentheses are standard errors of the parameter estimates. (ND) = Not determinable,

“Autocorrelation function (ACF) lags (s), among the first 20 lags, for which autocorrelation-function values, ry(s), lay outside a 95% confidence

interval,
“Could not determine. Median disease was zero.

TABLE 4. Results from autocorrelation and runs analyses of 2,4-sys-
tematic samples

Data Mean disease Significant Runs-test
set” (%) ACF lags" Z-value
11.24 311 1-3 —2.28
14.24 47.1 1,10 =1.11
15.24 35 NONE —0.86
18.24 35.2 14 —1.97
19.24 30.7 1,12 —2.44
20.24 56.3 1,3,4,8,11,15 —2.05
22.24 18.6 1-15 —8.42

*“Numbers to the left of the decimal point refer to the field or area within
a field from which the data sets were collected. Numbers to the right
of the decimal point indicate that the data sets are 2,4-systematic samples.

® Autocorrelation function (ACF) lags (s), among the first 20 lags, for
which autocorrelation-function values, ry(s), lay outside a 95% confi-
dence interval.

by an ARIMA(O 0 0) model. In contrast, five samples exhibited
two or more values of ry(s) that were outside a 95% CI. These
samples were adequately described by an ARIMA(1 0 0) model
(two samples), by an ARIMA(l 0 1) model (one sample), or
by an ARIMA(O 1 1) model (two samples). The parameter esti-
mates for these models are given in Table 3.

2,4-systematic samples. Within samples 11.24, 14.24, and 16.24
(evaluated by two workers), the mean disease incidences assessed
by individual workers differed by 8.4, 13.1, and 8.0%, respec-
tively. Results of runs, autocorrelation, and ARIMA analyses
of the 2,4-systematic samples (after correction for assessor effects)
are summarized in Tables 4 and 5. Based on all three types of
analyses, we conclude that disease was not randomly arranged
within the row segments. For all seven sets, the observed number
of runs was smaller than the expected number. In five of seven
samples, runs-test Z-values were —1.96 or less (P < 0.05). Simi-
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larly, six of the seven samples exhibited at least one value of
rz(s) that lay outside a 95% CI calculated assuming a random
disease pattern. In five of these six samples, the lag 1 value of
rz(s), rz(1), lay outside this CI. In addition, six of seven samples
could be modeled with nonrandom ARIMA models. The single
sample for which a random model, an ARIMA(0 0 0) model,
provided an adequate fit (sample 15.24) was the sample that had
no values of ry(s) that lay outside the 95% CI described above.
In addition, this sample also did not show a statistically significant
(a = 0.05) number of runs (Tables 4 and 5).

Among those samples that exhibited some type of nonrandom
pattern of disease, two (samples 18.24 and 22.24) were best fit
by a generalized ARIMA(1 0 1) model (11). A third sample (19.24)
was most adequately modeled by an ARIMA(1 0 2) model:

Zi =zl t &= 07161 — 072691 8z

As noted earlier, Zs represent average transformed disease values
(corrected for assessor if appropriate) associated with each
sampled plant pair in the row segment. Similarly, the es are random
errors (with a variance of ¢?) associated with each sampled plant
pair. The ¢s, 0s, and 6; are constants that quantify the relationship
between the Zs and es.

Two additional samples (14.24 and 20.24) were adequately
modeled by an ARIMA(1 0 3) model:

2, =¢z1Z+ € —0z16- — 0726 — 07363+ 57
For both of these samples, 87, was not significantly different
from zero, and thus, the —6;,¢,; term could be dropped from
the ARIMA(1 0 3) model, leading to a more specialized model:
Zi=bz1Z-1t 6 —0z16-1 — 07363+ 83

Similarly, data from the final systematic sample (11.24) could



be modeled by a specialized version of an ARIMA(1 0 4) model:
2, =¢z1Z1t e~ 0716 — 074641 8

Parameter estimates for the ARIMA models are provided in
Table 5.

DISCUSSION

In previous work (11), we described patterns of bacterial brown
spot that occurred within short snap bean-row segments (approxi-
mately 5 m). Brown spot patterns in these row segments were
adequately described by a generalized ARIMA(1 0 1) model. A
total census of disease in short-row segments, taken in conjunction
with the 24-systematic samples collected in this study, yielded
data that also were described adequately by a generalized
ARIMAC(1 0 1) model. We used this information to predict the
type of ARIMA model that would describe a 2,4-systematic
sample collected from the same field.

The type of ARIMA model that will describe an A4, B-systematic
sample can be predicted based on knowledge of the ARIMA
model that describes the underlying process from which the sample
is collected (20,22, B. D. Hudelson, unpublished data). 1f the
underlying process from which an A, B-sytematic sample is
collected is an ARIMA(1 0 g) process, then the A, B-systematic
sample will be described by an ARIMA(I 0 ¢’) model in which
q’ is the greatest integer in 1 + (¢ + A — 2)/(4A + B) (20,22,
B. D. Hudelson, unpublished data). In the context of our bacterial
brown spot work, these theoretical results implied that if a total
census sample from a snap bean field was described by a
generalized ARIMA(I 0 1) model, then in the absence of addi-
tional patterns, a 2,4-systematic sample from the same field should
also follow a generalized ARIMA(1 0 1) model.

For three of the seven fields (15,18,22), the patterns of disease
were described by a generalized ARIMA(1 0 1) model. The
patterns observed in 2,4-systematic samples 15.24, 18.24, and 22.24
were consistent with the patterns predicted from a complete census
of disease within short-row segments. However, four of the seven
2,4-systematic samples were not adequately described by the
predicted, generalized ARIMA(I 0 1) model. These samples were
better fit by an ARIMA(1 0 2), ARIMA(1 0 3), or ARIMA(104)
model. Disease in these samples exhibited not only the patterns
of disease that were expected, based on disease patterns previously
observed in short-row segments (Table 3; [11]), but also exhibited
patterns characterized by correlations in disease associated with
plant pairs two, three, or four sampled plant pairs apart,
respectively.

TABLE 5. Results from ARIMA modeling of 2,4-systematic samples

Given knowledge of the ARIMA model that describes an A, B-
systematic sample, one can attempt to determine the ARIMA
model that will describe the underlying process from which that
sample was collected. For the 2,4-systematic sample described
in this work, 4 = 2 and B = 4. The value of ¢" is 2, 3, or
4 for the ARIMA(1 0 2), ARIMA(1 0 3), or ARIMA(1 0 4)
processes, respectively. Thus, for sample 19.24, described by an
ARIMA(I 0 2) model, we seek g, such that 2 is the greatest
integer in 1 + g/6 (i.e., 6 = g < 11). Thus, 2,4-systematic sample
19.24 appears to exhibit a nonrandom relationship in brown spot
incidence at a distance of approximately six to 11 plants. This
plant spacing corresponds to a physical distance of approximately
0.41-0.75 m. Similarly, those samples described by an
ARIMA(1 0 3) model (14.24 and 20.24) exhibit a nonrandom
relationship in brown spot incidence at a distance of 12-17 plants.
For sample 14.24, this plant spacing is approximately 0.89-1.26
m; the plant spacing in sample 20.24 is approximately 0.97-1.37
m. Finally, sample 11.24, which was described by an ARIMA(1
04) model, exhibits a relationship in disease incidence at a distance
of 18-23 plants or 1.18-1.51 m. We should note that there may
be many ARIMA(p 0 q) processes (p > 1, g > 1) that could
potentially lead to the observed ARIMA(1 0 g*) processes (20).
However, for bacterial brown spot, a p > | has not been detected
in the 55 total-census samples collected to date. As a result, models
with p > | have not been considered further.

Bacterial brown spot patterns for plants that are six to 23 plants
apart can be detected not only in 2,4-systematic samples, but
also in the 55 total-census samples collected from short-row
segments (approximately 5 m) between 1985 and 1989 ([11]; Table
6). In total, 52 of these 55 total-census samples were modeled
by a generalized ARIMA(1 0 1) model. Sample autocorrelation
functions (ACFs) and partial autocorrelations (PACFs) (3) of
the residuals obtained after modeling these total-census samples
were evaluated for evidence of disease patterns in addition to
those described by the ARIMA(1 0 1) model. For the three total-
census samples that could not be modeled using ARIMA models,
sample ACFs and PACFs of the arcsine square root transformed
disease-incidence values were also reevaluated for the presence
of disease patterns. For all 55 total-census samples, a sample
ACF or PACF value that lay outside an appropriate 95% CI
(4) was considered possible evidence of an additional disease
pattern. A summary of the results of this analysis is given in
Table 6. Almost half of the samples (24 of 55) had one or more
residual ACF or PACF values that were outside an appropriate
95% CI. This frequency is similar to the frequency with which
the six- to 23-plant disease patterns were observed in the 2,4-
systematic samples (four of seven). Additional nonrandom

Data ARIMA bz 0;, 0, 0,4 0.4 a?

set* model estimate” estimate® estimate” estimate” estimate” estimate”

11.24 104 0.757 0.293 0 0 0.261 0.039
(0.124) (0.166) (ND) (ND) (0.095)

14.24 103 0.817 0.687 0 0.316 0 0.012
(0.083) (0.111) (ND) (0.096) (ND)

15.24 000 0 0 0 0 0 0.013
(ND) (ND) (ND) (ND) (ND)

18.24 011 | 0.924 0 0 0 0.123
(ND) (0.032) (ND) (ND) (ND)

19.24 012 | 0.772 0.166 0 0 0.024
(ND) (0.096) (0.105) (ND) (ND)

20.24 103 0.596 0.475 0 —0.183 0 0.033
(0.234) (0.246) (ND) (0.098) (ND)

22.24 101 0.937 0.658 0 0 0 0.036
(0.044) (0.090) (ND) (ND) (ND)

*Numbers to the left of the decimal point refer to the field from which the data sets were collected. Numbers to the right of the decimal point

indicate the data sets are 2,4-systematic samples.

®Parameter estimates from ARIMA modeling. A ¢, value of | implies that differenced data were modeled. Numbers in parentheses are standard

errors of the parameter estimates. (ND) = Not determinable.
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variability in the total-census samples occurred most frequently
(15 of 24 cases) at a distance of 12 to 17 plants and approximately
one-half as frequently at distances of six to 11 or 18 to 23 plants
(seven of 24 and four of 24 samples, respectively). These fre-
quencies are consistent with frequencies observed in the 2,4-
systematic samples (two of four, one of four, and one of four
samples, respectively). Thus, evidence for the frequent occurrence
of the additional patterns of brown spot observed in the 24-
systematic samples appears to be found in the total-census
samples. We believe that these are general patterns, and they
might be expected to occur on a regular basis in other snap bean
fields and in other growing seasons.

The underlying mechanisms generating the disease patterns we
observed in total-census and 2,4-systematic samples are unclear.
Patterns described by a generalized ARIMA(] 0 1) model could
arise in many ways. They simply may reflect a similar pattern
in Pseudomonas syringae population sizes associated with the
plants. Alternately, using the theory of ARIMA models, one can
show that a generalized ARIMA(l 0 1) pattern can also arise
through the combination of several processes: One of which can
be described by an ARIMA(I 0 0) model; the rest of which are
random processes (3). The random processes could include factors
such as the random initial distribution of P. syringae or random
variability in the genotype of plants within the row segment.
Possible candidates for the ARIMA(I 0 0) process, represented
by a relatively smooth, undulating change in the process along
the row, might be microenvironmental factors that affect disease
development or soil nutritional factors that affect plant
susceptibility. Many other potential explanations for the observed
patterns described by the generalized ARIMA(1 0 1) model are
possible.

The origins of the six- to 23-plant patterns are also open to
speculation. Overall, within total-census samples, the average
distance at which the six- to 23-plant patterns occur is 76.2 cm
(SD = 28.9 cm). This mean value is interesting because a common
row spacing for several agricultural row crops in Wisconsin is
76.2 cm. If at least some growers alternate the direction of row
orientation from year to year, then the patterns that center on
76.2 cm might represent some sort of carry-over effect related
to past cropping history. This carry-over might include P. syringae
pv. syringae associated with plant debris or could represent the
effects of furrow-incorporated fertilizers or pesticides. Because
of the relatively large standard error associated with the 76.2-
cm mean, this explanation is not adequate to explain all of the
six- to 23-plant patterns detected in total-census or 2,4-systematic
samples. Other cultural practices carried out across rows (or even
at an oblique angle) might be the source of these patterns. Potential
causes of the six- to 23-plant patterns (including possible cultural
origins) are currently under investigation.

In addition to its ability to detect larger scale patterns than
those detected in total-census samples, 2,4-systematic samples may
also provide an added ability to detect the undulating and jagged
patterns originally detected in short-row segments by total-census
sampling and described by a generalized ARIMA(I 0 1) model
(11). Consider, for example, total-census samples 11.1, 14.1, and
22.1 that appeared to exhibit a random brown spot pattern and
were adequately described by an ARIMA(0 0 0) model (Table
3)—the special case of a generalized ARIMA(!I 0 1) model in
which ¢y, = 0y, (11). Corresponding 2,4-systematic samples
11.24, 14.24, and 22.24, however, exhibited both the undulating
and jagged patterns and were fit with ARIMA(1 0 1) models
(Table 5) in which ¢z, > 07, > 0. Results from the 2,4-systematic
samples are consistent with the hypothesis that the undulating
and jagged patterns may have been present in the total-census
samples but could not be detected easily.

Difficulty in detecting the undulating and jagged patterns can
arise when the magnitudes of these two patterns are approximately
equal. In the context of the generalized ARIMA(1 0 1), this means
that ¢y, = Oy,. In such a situation, a total-census data set of
small size collected from such a process may appear random and
be modeled as an ARIMA(0 0 0) process.

The ability of 2,4-systematic samples to detect ARIMA(1 0 1)

436 PHYTOPATHOLOGY

TABLE 6. Analysis of total-census data sets for brown spot patterns
that recur every six to 23 plants

Lag
Data Length Number Significant distance
set* (m) of plants ACF/PACF lag® (m)
1.1 5.00 78 13(A) 0.833
1.2 5.00 74 NONE 5
1.3 5.00 70 15(A/P) 1.071
1.4 5.00 73 NONE arati
2.1 5.00 102 10(A/ P) 0.490
2.2 5.00 102 NONE .
2.3 5.00 94 NONE
24 5.00 98 NONE
3.1 5.00 72 NONE
3.2 5.00 96 NONE
33 5.00 91 NONE sip
34 5.00 85 19(P) 1.118
4.1 5.00 97 15(A/P) 0.773
17(A/P) 0.876
4.2 5.00 83 NONE A%
4.3 5.00 107 NONE st
4.4 5.00 9] 9(A/P) 0.494
5.1 5.00 65 NONE sar
5.2 5.00 82 NONE —_—
5.3 5.00 76 17(A/P) 1.118
5.4 5.00 74 17(P) 1.149
5.5 5.00 75 NONE .
6.1 5.00 101 8(A/P) 0.396
6.2 5.00 83 NONE s
6.3 5.00 74 NONE _—
6.4 5.00 67 15(A/P) 1.119
7.1 5.00 96 16(A/P) 0.833
7.2 5.00 95 13(A/P) 0.684
T.3 5.00 60 NONE P
7.4 5.00 107 14(P) 0.654
8.1 2.81 59 19(A/P) 0.905
8.2 1.89 45 NONE S
8.3 2.71 88 6(P) 0.185
9.1 1.85 51 10(A/P) 0.363
10.1 12.29 264 11(P) 0.512
13(A/P) 0.605
11.1 5.00 81 18(P) L.111
11.2 5.00 82 NONE v
12.1 5.00 60 NONE s
13.1 5.00 60 13(A/P) 1.083
14.1 5.00 100 NONE AT
14.2 5.00 77 NONE
15.1 4.25 116 NONE vus
15.2 3.58 96 15(A/P) 0.559
15.3 421 100 14(A) 0.589
15.4 ND* 67 NONE —
16.1 ND 100 16(P) 0.616°
16.2 ND 100 15(P) 0.578¢
16.3 ND 100 NONE -
17.1 6.52 98 9P) 0.599
19(A/ P) 1.264
17.2 ND 102 NONE —
18.1 7.00 111 NONE
19.1 ND 100 NONE
20.1 ND 100 NONE
20.2 ND 101 NONE
21.1 7.11 92 NONE
22.1 243 70 NONE

*Numbers to the left of the decimal point refer to the field or area within
a field from which the data sets were collected. Numbers to the right
of the decimal place distinguish between data sets collected from the
same field or area within the field.

®Lags (s) for which residual autocorrelation-function (ACF) or partial
autocorrelation-function (PACF) values lay outside a-95% confidence
interval (CI), after fitting the data with an appropriate generalized
ARIMAC(I 0 1) model. (A) indicates that only the ACF value lays outside
the CI. (P) indicates that only the PACF value lays outside the CI.
(A/P) indicates that both the ACF and PACF values lay outside the
ClI

CNc"t determined.
“Distances were based on the average plant densities for data sets 15.1,
15.2, and 15.3.



processes in which ¢y, and 8y, are close but not equal may
arise from several sources. The 2,4-systematic samples collected
in this study contained approximately two times the number of
plants found in the typical total-census sample collected in our
previous work. This larger sample size should yield more precise
parameter estimates and add power to detect ARIMA processes
with small differences in ¢y, and fy,.

Added sensitivity in 2,4-systematic samples may also be a result
of the averaging of individual disease-incidence values that takes
place before the sample is modeled. The averaging process reduces
variability and potentially increases the ability to detect spatial
patterns when ¢y, = 8y,. In addition, averaging has more subtle
effects. As noted above, a 2,4-systematic sample collected from
an underlying ARIMA(1 0 1) process (¢y; # 8y,) should also
be described as an ARIMA(I 0 1) process (¢z; # 0z)). If a
total-census sample exhibits an undulating and a jagged disease
pattern, then the corresponding 2,4-systematic sample will also
exhibit both patterns. However, the strengths of these two patterns
will not be the same in the total-census and in the 2,4-systematic
samples, and more importantly, the relative magnitudes of the
two patterns will differ in the two samples (B. D. Hudelson,
unpublished data). For example, if 0.90 =< ¢ ; < I (the undulating
pattern in the total-census sample is strong) and 0 < ¢y, — Oy,
<C0.1 (the jagged pattern in the total-census sample is only slightly
weaker than the undulating pattern), then the difference in the
magnitudes of the undulating and jagged patterns in the 24-
systematic sample will increase. Thus, both patterns are more
likely to be detected.

For an empirical example of this phenomenon, consider 2,4-
systematic sample 22.24. The total-census data set collected in
conjunction with this 2,4-systematic sample appeared to have a
random disease pattern (Table 3). However, parameter estimates
for the ARIMA(1 0 1) model fit to the 2,4-systematic sample
were cf:z.. = 0.937 and 6, = 0.658, indicative of a nonrandom
disease pattern. The estimates for ¢, and 6, can be used to
estimate the corresponding values of ¢y, and 8y, (B. D. Hudelson,
unpublished data). These values are ¢y, = 0.989 and 6y, = 0.887.
The difference between ¢y, and @y, is only 0.102. The ARIMA
modeling techniques we have used in our studies have detected
a difference of this magnitude or smaller in only one other sample
(11). Thus, we should not be surprised that disease from the total-
census sample was modeled with an ARIMA(0 0 0) or a random
model.

In this paper, we described one form of the second iteration
of an adaptive sampling strategy for detection and modeling of
unknown spatial patterns. The first step, detection and modeling
of patterns within small areas using a total census, has been
described previously (11). A generalized ARIMA(1 0 1) model
described patterns of disease in more than 90% of the row segments
in which these censuses were taken. Knowledge that disease in
short-row segments could be described using this model provided
the basis for developing the 2,4-systematic sampling method for
use in the second iteration of adaptive sampling (B. D. Hudelson,
unpublished data). The 24-systematic sample allowed efficient
sampling of plants for detection of patterns at larger scales. In
addition, disease patterns in 2,4-systematic samples were described
readily using ARIMA models. Finally, the type of ARIMA model
that should fit data from a 2,4-systematic sample could be pre-
dicted, based on the patterns observed at smaller scales. Thus,
inconsistencies between observed and predicted models were
indicative of additional, larger scale disease patterns. Application
of 2,4-systematic sampling in our work with bacterial brown spot
has confirmed the usefulness of this sampling plan for detecting
spatial patterns, at least when patterns at the smaller scale conform
to the generalized ARIMA(1 0 1) model.

Overall, adaptive sampling is relatively simple and is consistent
with the constraints of small sample sizes. The number of plants
assessed for disease needed to satisfy this sampling plan was
designed to fit within the constraint that it should not exceed
the capability of one trained individual working for one day
(although some samples have been evaluated by more than one
person). Analytical methodology is readily available in commer-

cial software packages (e.g., MINITAB, release 5.1.1, or the SCA
Statistical System, release II1.3.2). Although use of ARIMA
models requires some knowledge of statistics, it is neither concep-
tually difficult nor inaccessible (Cryer [10] gives a good introduc-
tion to the subject). Thus, with a modest amount of effort, the
methods we used in the first two iterations of adaptive sampling
for spatial patterns of bacterial brown spot should be readily
available to plant pathologists attempting to understand patterns
of other plant diseases. Although the focus in our work has been
on a row crop, adaptive sampling also can be used to study spatial
patterns in nonrow crops. For nonrow crops, however, added
care must be taken to initially select an appropriate sampling
unit. The advantages of adaptive sampling are that it is amenable
to detection of multiple, superimposed patterns that occur at
different scales. ARIMA modeling provides a model of disease
patterns, rather than simply determining whether they are random,
aggregated, or disaggregated. It also allows determination of the
scale at which the patterns occur and avoids the detection
limitations imposed by the use of quadrat sampling (16). Finally,
ARIMA modeling provides a model that can be used to develop
sampling plans for exploring the possible existence of patterns
that may exist at still larger scales.

Adaptive sampling as we have developed it for the study of
spatial patterns of bacterial brown spot is not without its problems.
The 2,4-systematic samples used in this study imprecisely identify
the distance at which larger scale patterns occur. For example,
we are able to identify nonrandom variability in disease for plants
that are 12 to 17 plants apart but cannot identify the distance
within this range of values more precisely. This imprecision is
inherent to A, B-systematic samples and will only be overcome
by the development and use of more sophisticated sampling plans.

In addition, we have concentrated on identifying disease
patterns in a single dimension. Disease development is a multi-
dimensional process, and the use of multidimensional techniques
would be preferable. We have opted for a unidimensional
approach because the theory and application of unidimensional
techniques (e.g., ARIMA modeling and associated sampling
theory) are well developed and documented and are easily
accessible. Our models of disease patterns, while not realistic
mechanistically, do represent a relatively precise description of
a unidimensional “slice” of the multidimensional brown spot
patterns. This description provides a foundation that can be used
to hypothesize about and test potential multidimensional
mechanisms for pattern development. Any mechanistic hypothesis
for bacterial brown spot must be consistent with the patterns
we have observed.

The development of statistical methods for analyzing multi-
dimensional spatial patterns continues to be an active area of
research, and it must be acknowledged that all currently available
techniques have their strengths and weaknesses. The most
sophisticated multidimensional techniques used by plant
pathologists have been kriging (13) and STARIMA (spatio-
temporal autoregressive integrated moving average) modeling
(17,18). Kriging is an extension of the use of semivariograms
for describing spatial patterns. It is difficult to find a way to
incorporate such methods into the type of adaptive plan discussed
in this paper, although some work on sampling design has been
discussed (9). STARIMA models represent a logical extension
of multidimensional autocorrelation functions. Although
STARIMA models have been well described theoretically (2,17),
parameter estimates for such models cannot be obtained, except
for models describing the simplest disease patterns (1,18). The
work of Basu and Reinsel (1) provides hope that methods for
estimating parameters for more complex models will be available
in the near future. Such a development would make adaptive
sampling more amenable to use in multiple dimensions.
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