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ABSTRACT

Zawolek, M. W., and Zadoks, J. C. 1992. Studies in focus development: An optimum for the dual dispersal of plant pathogens. Phytopathology

82:1288-1297.

Many pests and diseases have two or more dispersal mechanisms, differ-
ing in dispersal parameters and relative frequencies. However, published
studies all refer to models with a single dispersal mechanism. A new
numerical method, based on diffusion theory, allowed simultaneous deter-
mination of two dispersal mechanisms. The model was parametrized with
data from focus-forming Uredinales and Peronosporales. A form of
sensitivity analysis allowed us to study not only the effects of input param-
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eters on output parameters but also the effects of their interactions. These
output parameters are the total number of lesions in a finite field and
the velocity of focus expansion. Some general rules about the dual dispersal
mechanism are ventured. The most important finding is the existence
of an optimum value for the partition coefficient, F, the proportion of
spores attributed to the short-distance dispersal mechanism, for both
output parameters.

The mathematics of focus development in plant disease evolved
along two separate avenues, the analytical approach (26,28,29)
and the numerical approach (14,36). Some problems can be better
tackled by numerical techniques, whereas others are better solved
analytically (4,12). Together, the two approaches form a powerful
tool for understanding focus development.

Vanderplank (31) initiated an interesting discussion on dispersal
mechanisms and horizons of infection. He pointed out that a
foliar pathogen may need two different dispersal mechanisms to
disperse, multiply, and survive: “Either steep gradients only or
shallow gradients only would serve the pathogen badly ... A
mixture of shallow and steep gradients means that the pathogen
dispersing along steep gradients could colonize any susceptible
plants or fields it found after dispersing along shallow gradients.”
Little work has subsequently been carried out along these lines
(22). Recent simulation models (36) permit at least an exploration
of Vanderplank’s thesis.

This paper explores the influence of some disease parameters
on the velocity of focus expansion and on the number of lesions
present in a field when steep and shallow gradients occur simul-
taneously. The tool for this exploration is a diffusion theory of
focus development implemented by state-variable dynamic
simulation (36). (Vanderplank’s “mixture” is called the dual
dispersal mechanism. His “steep gradient™ was matched by a short-
distance dispersal mechanism, and the “shallow gradient” by a
long-distance dispersal mechanism.) Model results indicate that
the dual dispersal mechanism has an optimum for the partitioning
of the available spores over the long- and short-distance
mechanisms.

MATERIALS AND METHODS

Diffusion theory. The theory, described elsewhere (36), is a
specialization of the Diekmann-Thieme model (8,9,24,25), which
is a general model of spatial and temporal disease expansion.
Van den Bosch et al (26,27,29) adapted the latter theory to phyto-
pathology, applied it to existing data, and tested it with new
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experimental data (3). The diffusion theory is mathematically
formulated as a system of two partial differential equations, the
diffusion equation and the generalized Vanderplank equation,
that are solved numerically. Following EPIMUL (14), the theory
combines Vanderplank’s temporal model of disease development
with a spatial model of spore dispersal. The theory specifies disease
development in space and time with differential equations instead
of distribution functions, which are solutions of these equations
for special cases (see Appendix).

A simulation model with multiple dispersal mechanisms was
built within the framework of the diffusion theory. Each spore
dispersal mechanism has its own diffusion equation with its own
values of the diffusion coefficient, the spore dispersal charac-
teristic, and the rate of spore deposition. These mechanisms are
described by the following set of equations:

98(r.1) = D\VAS(r,1) — 6,5)(r,1)
+ R F[P(I',I'“P) - F(T,I—P“E)]
@ = D,V*S)(r,) — 8,8,(r1)

+ R (1 = F) [I(r,t-p) — T(x,t-p-i)]

in which x and y are space coordinates; ¢ stands for time; r is
a vector in space; S (r,¢) and S, (r,7) are densities of spores
dispersed by the short- and long-distance mechanisms, respec-
tively; I'(r,¢) is the lesion density; and

V2 = 8%/9x? + 8%/ 9y?

The other symbols are given in Table 1. The rate of change of
the lesion density caused by spore deposition is described by a
generalized Vanderplank equation, an expansion of equation 8.3
given by Vanderplank (30).

aT(r,1)
dt

I(r,1)
= E[GIS,(I',:) + 6282(1',1')] [1 - 1—‘_'“)

max

in which I'j,, stands for maximum lesion density. The other
symbols are given above and in Table 1.




Many spores, especially those dispersed by the long-distance
dispersal mechanism, pass the field boundary, and they can either
be lost or reflected to the field. These effects are simulated by
surrounding the field with a crop-free region and by imposing
absorbing boundary conditions on the equations at the boundary
of the total area thus simulated. The boundary conditions are
realized by equating the spore density at the boundary to zero.

The diffusion theory requires a set of parameters with well-
defined biological or physical meaning (Table 1). In the present
study we focused on the partition coefficient, F, which is the
proportion of spores allotted to the short-distance dispersal
mechanism at any time, 1. The 10 parameters of Table 1 were
combined into five new, dimensionless quantities (Table 2) that
were used as the input parameters. The contact distribution, the
distribution of the first-generation lesions produced by a single
mother lesion, is a measure of the range of spore dispersal (28,29).

Sensitivity analysis. Sensitivity analysis assesses the effect of
a parameter on a response and compares the relative effects of
different parameters. Therefore, it helps to judge the relative im-
portance of a single input parameter in determining the response
of an output variable under the ceteris paribus hypothesis. Because
the typical single-parameter sensitivity analysis (7,21,34) dis-

TABLE 1. Input parameters of the diffusion theory used for describing
epidemic development in time and space

Para- Dimen-
meter Description sion"
D, Diffusion coefficient for the short-distance mechanism LT
D, Diffusion coefficient for the long-distance mechanism ~ L*T™'
8 Deposition rate for the short-distance mechanism T
8, Deposition rate for the long-distance mechanism T
F Partition coefficient; proportion of spores dispersed 1
by the short-distance mechanism
R Number of spores produced by a sporulating lesion T
per unit of time
p Latency period T
i Infectious period T
E Inoculum effectiveness 1
A Width of a square field L

*T = time, L = space (length).

TABLE 2. New and dimensionless input parameters from the reduction
of diffusion theory parameters used for describing epidemic development
in time and space®

Dimensionless

parameter Description

¥ = REi Number of daughter lesions produced per sporulating
mother lesion in a noninfected crop

I = Ratio of infectious period to latency period

ilp
U,= A/~ D,/8, Ratio of field length to the width of the contact
distribution corresponding to the short-distance
mechanism
Ratio of field length to the width of the contact
distribution corresponding to the long-distance
mechanism

F Partition coefficient
*From Table 1.

Uy = A|N Dy/ &,

TABLE 3. Realistic ranges of input parameters" used in sensitivity analysis
of simulated focus development

Transformed Range
Parameter Range parameter (transformed)
v 4.8-25.5 log,o ¥ 0.68-1.41
I 1-2.2 I 1-2.2
U! 300—3,000 lOg;o U[ 2.48-3.48
U, 3-30 log,,Us 0.48-1.48
F 0.717-0.883 F 0.717-0.883

"From Table 2.

regards interactions between parameters, another method was
proposed (36), which consists of two steps: conducting a number
of simulation runs and fitting a second-order function to the results
of the simulations. For this function, we use

y=Bo+ 2L Bexi+ B T, j<i BipxieX; M

in which B, B, and p;; are coefficients; x; (k = i or k = j)
is the k-th independent variable (input parameter); n is the number
of independent variables (input parameters); and y is the
dependent or response variable. The coefficients of the fitted
function are determined with equal mean square errors within
the desired ranges of the input parameters. The scaled uniform
rotatable central composite design (1,20) was used because of
its desirable properties. The values of the input parameters and
the necessary number of simulation runs were calculated according
to this design.

The behavior of the simulation model in the vicinity of a point
in the n-dimensional parameter space, P = (x{, ..., x,), was
examined. This point (P) was the central point of the simulation
experiment. The neighborhood of this point, where the response
of the model must be examined, is an n-dimensional hypercuboid

TABLE 4. Results of 43 simulations runs® used in sensitivity analysis
of simulation model of the dual dispersal mechanism based on the diffusion
theory of focus formation

b

Z Z Z3 24 Z5

Run (¥) () () (U) (F)
| = | =] | -1 —1
2 -1 - | -1 -1 +1
3 —1 =1 = +1 -1
4 == | =1 —] +1 +1
5 =] -1 +1 i | —1
6 =] =] +1 = | +1
7 == =] +1 +1 =]
8 =1 =] +1 +1 +1
9 —] +1 -1 —1 -1
10 -1 +1 -1 =] +1
11 =] +1 | +1 —]
12 =] +1 —1 +1 +1
13 =] +1 +1 | -1
14 =1 +1 +1 — +1
15 —1 +1 +1 +1 —1
16 —1 +1 +1 41 +1
17 +1 —1 - — -1
18 +1 —] =) | —1 +1
19 +1 -1 -1 +1 -1
20 +1 -1 -1 +1 +1
21 +1 —] +1 -1 —1
22 +1 -1 +1 -1 +1
23 +1 -1 +1 +1 —1
24 +1 -1 +1 +1 +1
25 +1 +1 -1 -] -1
26 +1 +1 —1 —] +1
27 +1 +1 =) +1 -1
28 +1 +1 =] +1 +1
29 +1 +1 +1 —] -1
30 +1 +1 +1 —1 +1
3l +1 +1 +1 +1 —1
32 +1 +1 +1 +1 +1
33 —2.4 0 0 0 0
34 +2.4 0 0 0 0
35 0 —2.4 0 0 0
36 0 +2.4 0 0 0
37 0 0 —2.4 0 0
18 0 0 +2.4 0 0
39 0 0 0 —2.4 0
40 0 0 0 +2.4 0

41 0 0 0 0 —2.4

42 0 0 0 0 +2.4
43-52 0 0 0 0 0

*Shown in terms of normalized variables.
bz is a standardized variable (see Table 5). Original variables given in
parentheses (see Table 2 for definitions).
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(x? — Ax;, x + Ax;), where x? is the i-th coordinate of P, and
Ax; is a change of x; The particular value of Ax; depends on
the modeler; the interval (x} — Ax, x! + Ax,) should cover the
range of values of the i-th parameter that are of interest. Therefore,
x¥ and Ax, take values that are determined by their biological
context. For instance, x] for the infectious period of leaf rust
(Puccinia recondita) on wheat could be 16 days, and A x; 6 days;
these values were actually used in the simulation runs described
in Table 6.

TABLE 5. Values of five dimensionless input parameters of the diffusion
theory" corresponding to the values of the normalized variables used for
the simulation runs needed for sensitivity analysis of the model simulating
the dual dispersal mechanism®

Values for z;

Parameter —2.4 =1 0 +1 +2.4
' 1.5 4.8 11, 25.5 81.5

I 0.1 | 15 1.6 2.2 3.1

U, 61. 300. 948.7 3,000. 14,764.

U, 0.61 3 9.5 30. 147.6
F 0.603 0.717 0.8 0.883 0.997

*See Table 2.
"See Table 4.

Normalization of variables x; to
Z=x;—x)/Ax; i=1,...,n (2)

simplifies the notation used for planning of a set of simulation
runs, because z; varies from —1 to +1 and equals 0 for x; =
x{. Points z; = *1 lay on the surface of a hypercube in the
parameter space. Equation 1 becomes:

y=v+ 3k vzt 3 E;"zl.j=l' Yij'Zi*Zj 3)

where vy, v;, and 7;; are new coefficients.

Parametrization. Model input parameters, relevant to focus
development of airborne foliar diseases caused by fungi, were
selected (Table 1). The chosen ranges cover empirical data for
P. recondita and P. striiformis on wheat and Peronospora farinosa
on spinach (26,29). The ranges, recalculated for the variables of
Table 2, are given in Table 3. The ranges of ¥ and [/ are easy
to interpret. The ranges of U, and U, were determined by choosing
a field width of 300 m under the assumption that dispersal
distances for U, (the width of the contact distribution corre-
sponding to the short-distance mechanism, \/D,/8,) vary from
0.1 to 1 m, and for U, (the width of the contact distribution
corresponding to the long-distance mechanism, m, from 10
to 100 m. Because the influences of ¥, U,, and U, on focus

TABLE 6. Simulation runs shown in terms of real parameter values,” calculated according to Tables 4 and 5 using equations from Table 2°

Parameter values

Run R i D] 5| Dz 62 F
1 0.48 10. 10. 10. 1,000. 0.1 0.717
2 0.48 10. 10. 10. 1,000. 0.1 0.883
4 0.48 10. 10. 10. 100. 1. 0.717
4 0.48 10. 10. 10. 100. 1. 0.883
5 0.48 10. 1. 100. 1,000. 0.1 0.717
6 0.48 10. 1. 100. 1,000. 0.1 0.883
7 0.48 10. 1. 100. 100. 1. 0.717
8 0.48 10. 1. 100. 100. 1. 0.883
9 0.22 22 10. 10. 1,000. 0.1 0.717
10 0.22 22. 10. 10. 1,000. 0.1 0.883
11 0.22 22, 10. 10. 100. 1. 0.717
12 0.22 22. 10. 10. 100. 1. 0.883
13 0.22 22. 100. 1,000. 0.1 0.717
14 0.22 22, L. 100. 1,000. 0.1 0.883
15 0.22 22, L. 100. 100. 1. 0.717
16 0.22 22. 1. 100. 100, 1. 0.883
17 2.55 10. 10. 10. 1,000. 0.1 0.717
18 2.55 10. 10. 10. 1,000. 0.1 0.883
19 2.55 10. 10. 10. 100. 1. 0.717
20 2.55 10. 10. 10. 100. 1. 0.883
21 2.55 10. 1. 100. 1,000. 0.1 0.717
22 2.55 10. 1. 100. 1,000. 0.1 0.883
23 2.55 10. 1. 100. 100. 1. 0.717
24 2.55 10. 1. 100. 100. k: 0.883
25 1.16 22 10. 10. 1,000, 0.1 0.717
26 1.16 22, 10. 10. 1,000. 0.1 0.883
27 1.16 22, 10. 10. 100. L. 0.717
28 1.16 22, 10. 10. 100. L. 0.883
29 1.16 22, 1. 100. 1,000. 0.1 0.717
30 1.16 22, 1. 100. 1,000. 0.1 0.883
31 1.16 22 1. 100. 100. L. 0.717
32 1.16 22, 1. 100. 100. 1. 0.883
33 0.094 16. 1. 10. 997.2 1. 0.8
34 5.09 16. L. 10. 997.2 1. 0.8
35 1. 1. 1. 10. 997.2 1. 0.8
36 0.36 31 1. 10. 997.2 1. 0.8
37 0.69 16. 23.9 1. 997.2 1. 0.8
38 0.69 16. 0.1 242.2 997.2 1. 0.8
39 0.69 16. L. 10. 24,187. 0.1 0.8
40 0.69 16. 1. 10. 4.1 1. 0.8
41 0.69 16. 1. 10. 997.2 1. 0.603
42 0.69 16. 1. 10. 997.2 1. 0.997
43-52 0.69 16. 1. 10. 997.2 1. 0.8

“See Table 1.
*For all runs, E= 1, p = 10 days, and A = 300 m.
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development seemed to be exponential rather than linear, log,,¥,
logioU,, and log,,U, were used (Table 3).

Number of simulation runs and values of input parameters.
The number of coefficients of equation 1 or 3 (N) is related
to the number of input parameters, n, by a simple equation (1,36).
Because n = 5 (five input parameters), N is calculated to be 21
(1). Accordingly, the number of runs needed by a simulation
experiment with a uniform rotatable central composite design
is at least 21. Following Box and Hunter (1), the number of
simulation runs (M) needed was M = 52 (5,6,15,16,36). Of these
runs, a number N, = 10 (runs 43-52) are required at the central
point in parameter space (z; = 0 for i = 1, ..., 5). Because of
the deterministic nature of the diffusion theory, these N, runs
are identical. Therefore, only one run was actually performed,
but its results were used 10 times in the least squares fitting
procedure.

Next, 2n = 10 simulation runs, from 52 needed, must be
performed at so-called axial points for each parameter (z; = *ta,
for the j-th parameter), when the other parameter values are kept
at their central points (z; = 0 for i # j). As a must be greater
than 1, these runs will give information about the model behavior
outside the chosen interval of the input parameters. The distance
from the central point to the axial point is (1) @ = 2"/*. For
n=3,

a=2M"=24 4)

Equation 2 changed ranges of input parameters (Table 3) into
the standard ranges from —1 to +1. According to equation 4,

3 Log,, L60) A

the axial points were in —2.4 and +2.4. The values of z (i =
l,...,5), =24, —1,0, 1, and +2.4, were used to design 43
runs of the diffusion model (Table 4). Note that the z values
were normalized within the chosen interval of variability of the
input parameters, but the axial points are outside this region.
The values of z; were transformed into the dimensionless input
parameters x; (where x; stands for ¥, /, U, U,, and F) (Table
5) by the inverse transformation of equation 2 (the log
transformation of W, U, and U, was used when necessary):

xi=x1+z+Ax; i=1,....n (5).

Their translation into the original parameters of the diffusion
theory gave the actual values used for the 43 simulation runs
(Table 6).

Model responses. The two model outputs of interest were the
scaled velocity, ¥, of focus expansion ¥ = ¢yp/A, in which ¢,
is the velocity of focus expansion, p is the latency period, and
A is the linear size of a square field; and the total number of
lesions present in a field at a certain time ¢, L(f), which is a
dimensionless function of time.

The time values of 1+ = 10, 20, 40, 60, 80, and 100 days were
chosen for determination of L(z), these being 1, 2, 4, 6, 8, and
10 times the value of the latency period, p, which was 10 days
for all runs.

Calculation of responses. For the numerical solution of the
system of equations of the diffusion model, the simulation region
was divided into a 21 X 21 grid. The central 11 X 11 grid points
represented a field covered with a susceptible crop, and the

Fig. 1. Sample runs of simulation model, all at ¢+ = 60. The horizontal plane, covered by crop, is marked by the X and ¥ axes. The vertical
axis represents logyyL(60), where L(60) is the number of lesions per grid point at r = 60. At / = 60 saturation is not yet attained. The following
combinations of variables are shown, with / = low and H = high value (values corresponding to z; = —1 and z; = +1, respectively, in Table
5). The representation of the focus may be seen as a hat with cone and rim. In A (F=L I=1 ¥ =1 U, = |, Uy, = I run 1 in Table 4),
the cone is modest because of low ¥, and the rim is marked as a result of a high proportion of spores used for the long-distance dispersal (F
= low). When few spores are available, as in B(F = H, =1 ¥ =1/, U, =1, U, = I, run 2 in Table 4), for long-distance dispersal (F = high)
the rim is smaller, but the cone does not change much. In C (F= H, I = H, ¥ = H, U = H, Uy = H; run 32 in Table 4), the high value
of ¥ dominates; the cone is big, and no rim is visible. The effect of low / makes the cone even bigger, as in D (F= H, I =1 W = H, U,
=H U,= Hyrun 24 in Table 4). InE(F=H, I=H ¥ =H U = H U, = [ run 30 in Table 4), long-distance dispersability is high (U,
= low), and the rim increases dramatically. In F (F= H, I = H, ¥ = |, U, = H, U, = H; run 16 in Table 4), the effect of low ¥ predominates,
and the hat has a small cone without any rim; the cone is narrow because long- and short-distance dispersability are low (U, and U, are high).
The other 26 runs yield only minor variations of the six runs shown here.
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surrounding grid points represented a crop-free neighborhood
(the inoculum effectiveness E = 1 for the central 11 X 11 grid
points and E = 0 otherwise). Absorbing boundary conditions
were realized by equating the spore density to 0 at the boundary
of the 21 X 21 simulated region [S;(r’,1) = Sy(r’,r) = 0, where
¢’ is r for boundaries]. The focus was initiated by a single lesion
at the center of the field [S,(r,0) = Sy(r,0) = 0, ['(r,0) = 0 except
for the center r,, where I'(r,0) = 1]. Simulations were performed
on a VAX 785 computer using PODESS (Partial and/ or Ordinary
Differential Equations Systems Solver) (36). Each run simulated
100 days of focal development. The total number of lesions present
in the field, L(¢), at time ¢ was calculated by summation of the
numbers of lesions for all the grid points representing the field.

The value of ¥ is the velocity of focus expansion, ¢, scaled
to the two values that were constant for all runs: 4 = 300 m
and p = 10 days. The value of ¢, was determined empirically
from the simulation results as the velocity of movement of a
focal front. The focal front is a curve surrounding the focus that
connects points with a fixed lesion density. Generally, the level
of four lesions per grid element was chosen. In the early stages
of focus development, when velocity was not yet stabilized (28),
this level was changed to 0.1 lesion per grid element (run 33).

For the function log;oL(1), the input parameters were log ¥,
1, log,oU,, log;oU,, and F. For the function of log,o¥, the input
parameters were log,gV, I, logi(1/ Uy), logi(1/ Us), and F. The

parameters 1/ U, and 1/ U, were used instead of U) and U, because
it was proven earlier that the velocity of focus expansion depends,
linearly, on the width of the contact distribution (27,36). Loga-
rithmic transformation was applied to the functions L(1) and V'
to reflect logarithmic transformation of input parameters while
planning the simulation runs.

Responses were related to the input parameters by equation
1, which was fitted by least squares (10,13,19) with the SAS GLM
procedure. Additionally, an optimum analysis for the fitting
functions was done with the RSREG procedure of SAS, which
determines those values of the independent variables at which
responses reach their extrema.

RESULTS

There was a great variety in foci produced by different runs.
Numerical analyses of the results are presented below. Figure
1 shows the influence of changes in the model parameter values
on the resulting number of lesions present in the field.

For the log,, of the total number of lesions, L(f), and for the
logy, of the scaled velocity of focus expansion, V, the general
function (equation 1) was fitted to the results (Table 7). The
resulting coefficients B;(¢) and B;;(7) are given in Table 8 [columns
1-6 for log;L(¢) at different time instances, and column 7 for
V]

TABLE 7. The values of the dependent variables L(10), L(20), L(40), L(60), L(80), and L(100) at time ¢ = 10, 20, 40, 60, 80, and 100 days,
respectively, and of the dependent variable ¥ for the 43 runs of the sensitivity analysis of the model simulating the dual dispersal mechanism

Dependent variables

Run L(10)* L(20) L(40) L(60) L(80) L(100) v
1 1.31 5.1 37 266 1,863 13,075 0.22
2 1.38 5.6 48 408 3,359 27,817 0.22
3 1.36 5.9 54 486 4,276 37,950 0.056
4 1.40 5.9 56 518 4,663 42,289 0.051
5 1.35 5.1 38 275 1,946 13,803 0.22
6 1.42 5.6 50 424 3,539 29,681 0.22
7 1.39 5.9 55 501 4,439 39,735 0.056
8 1.44 6.0 58 539 4913 44,885 0.052
9 1.15 3.0 14 64 278 1,207 0.16
10 1.18 3.3 17 86 421 2,059 0.16

1 1.17 3.4 19 98 508 2,621 0.041

12 1.19 3.4 19 102 536 2,801 0.038
13 1.16 3.0 14 66 289 1,264 0.17
14 1.19 3.3 18 90 444 2,188 0.16
15 1.18 34 19 101 523 2,703 0.042
16 1.20 34 20 105 555 2,925 0.039

17 2.69 24.9 2,619 2.02- 10° 1.63+ 10 9.45 - 10° 0.38

18 3.04 28.8 3,930 3.76 - 10° 3.65- 107 1.20 - 10° 0.36
19 2.92 29.9 4,394 4.42-10° 4.60 - 107 1.74 - 10° 0.11

20 3.14 31.0 4,793 5.08 - 10° 5.36 - 107 1.28 - 10° 0.10

21 2.85 25.5 2,751 2.19- 10° 1.80 - 107 1.02 - 10° 0.39

22 3.24 29.7 4,144 4.10-10° 4,04 - 10 1.21-10° 0.36

23 3.08 30.6 4,584 4.75 - 10° 5.00 - 107 1.80 - 10° 0.11

24 3.34 31.9 5,044 5.54 - 10° 5.93- 107 1.28 - 10° 0.10

25 1.76 11.9 432 13,706 4.40 - 10° 1.40 - 107 0.31

26 1.93 13.6 603 22,716 8.70 - 10° 3.23- 107 0.32

27 1.87 14.1 669 26,638 1.08 - 10° 42710 0.087

28 1.97 14.5 715 29,424 1.23 - 10 49210 0.082

29 1.84 12.1 448 14,454 4.62 - 10° 1.50 - 10’ 0.31

30 2.02 13.8 628 24,150 9.43 - 10° 3.56 - 107 0.32

31 1.94 14.3 691 28,084 1.16 - 10° 4,62+ 10 0.087

32 2.06 14.7 744 31,258 1.34 - 10° 5.38+ 107 0.082

33 1.07 2.0 4 8 14 24 0.04

34 5.05 71.9 36,534 1.27 - 107 2.35-10° 3.90- 10" 0.31

35 9.73 88.2 7,257 6.16 - 10° 5.31- 10 2.78 - 10° 0.12

36 1.28 49 50 480 4,643 44,870 0.13

37 1.25 7.9 139 2,313 38,804 6.49 - 10° 0.15

38 1.60 8.8 186 3,576 69,061 1.33- 10° 0.16

39 1.50 7.5 125 1,916 29,547 4.56+10° 1.45

40 1.55 8.7 181 3,438 65,708 1.25 - 10 0.031

4] 1.48 8.4 168 3,065 56,027 1.02- 10° 0.17

42 1.62 8.9 193 3,780 74,495 1.47 - 10° 0.14

43-52 1.55 8.7 180 3,413 64,951 1.24 - 10° 0.16

“The values of L(f) for 1 = 40 were rounded to integers. For r = 10 and 20, the values of L(r) were not rounded.
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TABLE 8. Values of the coefficients of equation 1" with the independent variables ¥, I, U, U,, and F fitted to the responses logyp L(1) at times
t =10, 20, 40, 60, 80, and 100 days, and to the response logo V'

Log,, of
Parameter Variable L(10) L(20) L(40) L(60) L(80) L(100) v
B W —0.055 0.64 1.89 2.99 4.6 7.71 0.85
B, I —0.43 —0.64 —0.75 —0.95 —1.25 —2.44 0.042
Bs U, 0.25 0.22 0.34 0.54 0.64 0.8 —0.27
Bs U, 0.1 0.33 0.77 1.17 1.58 1.84 0.65
Bs F 0.84 1.87 2.19 3.51 401 4.51 2.47
B2 W f —0.15 —0.11 —0.42 —0.62 —0.83 —0.53 0.053
B WU, 0.02 0.011 0.0084 0.02 0.024 0.003 0.0078
B WU, 0.017 0.019 0.057 0.086 0.1 —0.054 —0.069
Bis U F 0.2 0.14 0.31 0.49 0.58 —0.55 —0.00012
B U, —0.0063 —0.0029 —0.0027 —0.0047 —0.0058 0.0078 —0.003
Bos U, —0.0052 —0.0069 —0.02 —0.037 —0.044 0.043 0.0074
Bas IF —0.051 —0.019 —0.086 —0.17 —0.19 0.47 0.062
B Uy, —0.0013 —0.0006 —0.0018 —0.0015 —0.0012 —0.0051 —0.00092
Bis Uy F 0.0091 0.0088 0.053 0.021 0.036 —0.0038 0.021
Bus Uy F —0.074 —0.26 —0.66 —0.99 —1.36 —~1.53 0.16
B p? 0.21 0.14 0.38 0.54 0.51 —0.23 —0.27
B2 I 0.15 0.15 0.22 0.29 0.37 0.4 —0.065
B3 Ui —0.041 —0.038 —0.06 —0.09 —0.11 —0.13 —0.041
B vi —0.018 —0.048 —0.08 —0.12 —0.16 —0.19 0.054
Bss F? —0.5 —1. —0.94 —1.41 —1.43 —1.56 —1.56
SSR 0.12 0.14 0.18 0.31 0.53 1.57 0.12

*See Materials and Methods.
*Sum of squared residuals; its minimum value is 0.

TABLE 9. Values of the input parameters F, log,,U/,, and log, U, and
of the widths of the contact distributions (in meters) at which the maximum
values of the responses log,; L(¢) at times ¢+ = 10, 20, 40, 60, 80, and
100 days are reached

Maximum for log;, of

Parameter  L(10)  L(20)  L(40)  L(60)  L(80)  L(100)
F 0.84 0.82 0.83 0.83 0.83 0.71
logyo U, 3.14 3.05 3.1 3.1 311 312
logyoUs 1.07 1.21 1.32 1.33 1.37 1.79
VD5, 0.22 0.27 0.24 0.24 0.23 0.23
VD8, 25.5 18.5 14.4 14. 12.8 49

Coefficients for log,L (f). The coefficients for the linear terms
indicate that a shorter latency period or a longer infectious period
lead to a higher disease severity at any time, when the other
parameter values are constant, which is to be expected (see 3,
and B, in columns 1-6 of Table 8). It can also be concluded
that some spores arriving at the field boundary are blown outside
the field (see 85 and B,).

The coefficients for the quadratic terms indicate that the
influences of the input parameters on log;, L(r) were nonlinear.
The coefficients for the mixed terms represented the effects of
interactions between the independent variables on log,L(r).
Results indicated negative interactions between ¥ and [ and
between U, and F. For ¢ < 100 days, a positive interaction between
the total number of offspring and the partition coefficient was
observed. For t = 100 days, when the saturation level of lesion
density was reached for some runs, the sign of this coefficient
changed to negative. Changes in the sign of B,s(f) compared to
those of B,s(#) indicate opposite effects of /I-F and ¥-F
interactions.

The changes in the signs of many interaction coefficients
between ¢ = 80 and ¢ = 100 days were the result of reaching
the saturation level of lesion density in some grid points for runs
18, 19, 20, 22, 23, 24, 34, and 35. These runs were performed
with high values of ¥, low values of 7, or high values of F,
and they resulted in stopping the growth of the lesion density
in the central area of the field for ¢+ > 80 days. For the other
runs, lesion density over the field continued to grow exponentially.
Thus, at t = 100 days, there is a value of ¥ (¥ = 11) for which
the maximum of log;y L(¢) exists, but this value will probably

change when more grid elements reach their saturation level for
log,o L(¢). These sign changes of the coefficients are a result of
the limited space for focus development.

Maxima of log,,L (¢). The negative signs of B1(z), Bas(1), and
Bss(#) throughout the simulation indicate the existence of values
of U,, U, and F for which log,,L(¢) has maxima. The use of
all independent variables identified global extrema of log,q L(¢)
outside the range of the input parameters. These extrema are
saddle points. As the log;oL(7) function (Table 8) was fitted only
within the range of the input parameters, the extrema cannot
be used. They result from an extrapolation beyond the region
of applicability of equation I.

Our major interest is in the influence of the dual dispersal
parameters (U}, U,, and F) on the response log,, L(f). Therefore,
the maxima for a new fitting function, which relates log,U,,
log,oUs, and F to log;g L(r) (the function analogous to the one
defined by equation 1, but for these three independent variables
only) were taken into account for a maximum analysis. This time,
the maxima were within the range of the input parameters. Values
of the input parameters at maxima of the responses are shown
in Table 9. The corresponding values of the widths of the contact
distributions for the two dispersal mechanisms, \/D,;/8, and
\/ D5/ 8,, are also given. Values of Fand v/ D,;/§, at maxima of
L(t) were nearly constant throughout the simulations, whereas
values of \/D,/8, decreased with time. The maxima at t = 60
are shown in Figure 2.

Influence of U,, U,, and F on log;,L (¢). The absolute values
of the coefficients corresponding to U, U,, and F indicate a
strong influence of these parameters, especially F. Additionally,
the log,, of the total number of lesions in the field, log,,L(¢),
has a maximum for certain values of the input parameters F,
U,, and U, (Table 9). The negative interaction between U, and
Fis due to the fact that a higher value of v/ D,/ 8, spreads disease
over a larger area (extensification of disease [35]), whereas a higher
proportion of spores dispersed by the short-distance mechanism
causes a faster development of a disease in the areas already
infected (intensification of disease).

Coefficients for log;,¥. The coefficients for the linear terms
are all positive, except B;. Their values indicate that the influence
of F is the most important one, and the influence of / is the
least important.

The coefficients for the quadratic terms are all negative except
the coefficient for v/ D,/ &,. The high absolute value of 855 indicates
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Fig. 2. The response of log;,L(60) (vertical axis) demonstrates interactions between A, WI = logeU; and W2 = logyyU; B, W1 and F; and C,
W2 and F. These graphs show log,L(60) as a function of different pairs of independent variables; therefore, the values at which maxima are
reached differ slightly from those in Table 9, where logyL(60) is treated as a function of three independent variables.

a strong nonlinearity in the dependence of log;,¥ on F.

Among the interaction terms, the positive interaction between
the width of the contact distribution for the long-distance
mechanism, |/ U,, and the partition coefficient, F (85 = 0.16)
(Table 8) has the highest absolute value. This one is followed
by a negative interaction between W and the width of the contact
distribution of the long-distance mechanism, 1/ U,, by a positive
interaction between / and F, and by a positive interaction between
W and 7 (Table 8). Generally, the interaction coefficients have
low absolute values.

Extremum of log,oV. The values of coefficients for quadratic
terms indicate the existence of values of log W, I, log,, (1/ U)),
logyo (1/ U,), and F for which log;o ¥ has an extremum (i.e., saddle
point). This extremum appeared to be a maximum with respect
to W, 7, the width of the contact distribution for the short-distance
mechanism, v/ D, /8, and F, and a minimum with respect to the
width of the contact distribution for the long-distance mechanism
\/ D,/ 8,, at the point ¥ =40, I = 1.5, \/D,/8,=0.31 m, \/ D,/ 8,
= 9.41 m, and F = 0.78. The maximum velocity was reached
at the edge of the examined interval for ¥, confirming that the
rate of focus expansion increases with the number of offspring.
On the other hand, the minimum velocity of focus expansion
appeared at the lower edge of the examined interval of the width
of the contact distribution for the long-distance mechanism. As
inoculum is spread mainly by the long-distance mechanism, this
minimal velocity at the minimum of v/ D,/ 8, seems to be obvious.
The maximum for log;, ¥ at v/ D;/8, = 0.31 m should be seen in
light of the interaction between the two dispersal mechanisms.
Higher values of the width of the contact distribution for the
short-distance mechanism result in slower buildup of a focus at
its front, whereas the lower values exclude contribution of this
mechanism to the spread of inoculum. The maximum for log,, ¥
at F' = 0.78 was due to a decrease of log,,/ when either too
low a proportion of spores was dispersed by the long-distance
mechanism (F > 0.78) or too high an amount of spores was
blown outside the field (F < 0.78). With the low influence of
I on log,yV (see B, and B,, in Table 2) taken into account, the
maximum for log, ¥ at / = 1.5 is considered to be an artifact.
The maximum is shown in Figure 3, with log,,V as a function
of Fand lOgmU|.

DISCUSSION

Sensitivity analysis. The present method of sensitivity analysis
is often used in industrial research for examination of stochastic
responses. Here, it is applied to computer simulation of focus
development, in which responses result from a deterministic
process (36). It allows evaluation of linear, quadratic, and mixed
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Fig. 3. A plot of log,,¥ (vertical axis) demonstrates interaction between
F and W1 = logoU,. Short distance dispersal, as represented by WI,
clearly has a value at which log,} reaches a maximum. This plot shows
logjp¥ as a function of two independent variables only; therefore, the
values at which maximum is reached differ from those in text, where
log, ¥ is treated as a function of all independent variables.

influences of input parameters on model output. Because of the
uniform rotatable central composite design, the coefficients of
the fitted second-order function are determined with equal mean
square errors within the desired ranges of the input parameters.
This function approximated the response of the diffusion model
for the dual dispersal mechanism and thus allowed inferences
about the influence of the input parameters on the model output.

Number of lesions in the field. The results for the number
of lesions present in the field, L(¢), can be summarized in a few
rules and conclusions. First, in the early stage of focus formation,
a large number of offspring (¥) or a low value of the ratio of
infectious period to latency period (/) favor continued focal



development, if other parameters are constant. The later con-
clusion is easier to understand when one takes into account that
a shorter infectious period combined with a constant total number
of offspring produced by a sporulating lesion results in a higher
rate of offspring production.

In a later stage of focus formation, when the saturation effect
(exhaustion of the space available for new lesions) becomes
important, the influence of ¥ and 7 on L(f) depends on the spatial
distribution of the pathogen.

There are values of F, \/D,/8, and \/D,/8,, for which L(r)
reaches a maximum if ¥ and I are kept constant. The effect
results from the limited space available for the establishment of
new lesions within the focus.

The value of F at which the maxima are reached is nearly
constant between = 10 and ¢ = 80 days after the initial inoculation
(i.e., F = 0.82-0.84). Later, when sites available for infection
are exhausted in the center of a focus, this value drops to F
= 0.71, just on the extreme of the examined interval of F. This
happened because the simulation runs with lower values of F
reached the saturation level later.

The values of v/ D;/8, at which the maxima are reached are
nearly constant throughout focus development, \/ D/, = 0.22-
0.27 m.

The value of v/ D,/8, at which the maximum is reached
decreases with time, from 25.5 m at + = 10 days to 12.8 m at
t = 80 days, and then drops to 4.9. The last drop is due to
the same cause as the drop in the value of F.

Extensification and intensification of disease interact through
F and U,. A higher value of the width of the contact distribution
for the long-distance mechanism together with a higher proportion
of spores dispersed by the short-distance mechanism lead to a
higher number of lesions than if both factors act separately.

The proportion of spores dispersed by the short-distance
mechanism (F) interacts with the total number of offspring (¥)
and the ratio of infectious period to latency period (/). At early
stages of focus development the ¥-F interaction is positive; later,
it is negative. The /- F interaction behaves inversely.

The last rule can be understood as follows. A large number
of offspring together with a high proportion of spores dispersed
by the short-distance mechanism cause faster development of
disease at the center of a focus, so that when the number of
sites at the center available for infection is exhausted, many spores
are lost by deposition on already infected tissue. In the long run,
a large number of offspring, combined with a wide contact
distribution of the long-distance mechanism, is more favorable
to focal development (since more spores dispersed by the long-
distance mechanism cause infection of a larger area). Because
alow value of Thas an influence on disease development analogous
to a high value of ¥, the /-F and W-F interactions have opposite
effects.

Velocity of focus expansion. The results for the velocity of
focus expansion, F, can be summarized in a few rules and
conclusions. First, a higher number of offspring results in a higher
velocity of focus expansion. A high value of the width of the
contact distribution corresponding to the long-distance mecha-
nism has a similar effect. Second, if the space for focus develop-
ment is limited, there is a value of the partition coefficient (propor-
tion of spores dispersed by the short-distance mechanism), F =
0.78, for which the velocity of focus expansion reaches its maxi-
mum. Third, the proportion of spores dispersed by the short-
distance mechanism interacts positively with the width of the con-
tact distribution corresponding to the long-distance mechanism.
Strong extensification (a high value of v/ D,/8,) and strong inten-
sification (a high value of F) increase the velocity of focus
expansion more than if the interacting factors act separately.

The partition coefficient. The most important finding is the
existence of a value of F for which both L(r) and ¥V have their
maxima. Because the velocity of focus expansion is mostly the
result of extensification (intensification, however, also plays some
role), and as the number of lesions present in the field depends
on both extensification and intensification of disease (the widths
of the contact distributions of both dispersal mechanisms are

equally important), the near equality of the values of F for which
the two maxima exist, F = = (.8, is not an obvious result. We
cannot offer an explanation for this near equality. A study on
the formation of daughter foci (36) produced the most realistic
pictures for values of F between 0.8 and 0.99. Apparently, the
value 0.8 of the partition coefficient (F) is biologically significant.

Phytopathological relevance. Elementary epidemiological
assumptions were the basis of the mathematics leading to the
theorem of constant radial expansion of disease foci (8,9,24,25).
The theorem is valid in phytopathology, whether we study foci
in the classical sense (3,17,18,26-29,36) or pandemics initiated
by asingle large focus (11). The diffusion theory and the simulation
model derived from it are little more than mechanistic implemen-
tations of the elementary theory, validated by field experimen-
tation (36) as far as possible.

Parametrization of the simulation model was not done by
selecting single and necessarily arbitrary values, but by applying
far less arbitrary ranges of values. These ranges were chosen so
that they covered known ranges of pathogenic fungi from the
groups Uredinales and Peronosporales, which cause typical foci
in annual crops. These fungi are Puccinia arachidis on peanuts
(23), P. recondita and P. striiformis on wheat, Phytophthora
infestans on potatoes, and Peronospora farinosa on spinach
(18,26,27,36).

Vanderplank’s 1975 hypothesis (31), quoted in the introduction
and rephrased for the present purpose, was tested by means of
a validated model that simulated a dual dispersal mechanism.
Vanderplank’s hypothesis was confirmed and elaborated. A major
parameter of the dual dispersal mechanism is the partition
coefficient (F). Intuitively, F has an optimum value when the
space available for new lesions becomes limiting during focus
development. The surprising result of the present study is the
optimum value for F of about 0.8, given the constraints of the
model and diseases used for parametrization.

Obviously, dual dispersal has survival value for the pathogen,
as Vanderplank already stated. Continued theoretical and
empirical research is needed to determine whether an optimum
value for the partition coefficient is a general phenomenon indeed
and, if so, whether the optimum always tends toward the value
0.8.

Dual dispersal as discussed here is based on mathematical and
physical reasoning. It has an empirical reference described in terms
of primary and secondary foci. With rusts (23,27-29,35,36), downy
mildews (2,26), and several other foliar pathogens, within-crop
short-distance dispersal leads to foci of one to a few meters in
diameter. Low-frequency, long-distance dispersal occurs simul-
taneously when spores originating in the primary focus are carried
over the crop and deposited downwind, where they may initiate
secondary foci. The distance between secondary and primary foci
varies from less than 1 m (Uromyces fabae) to over 100 km (P.
striiformis) (32,33). Typically, it is between 0.5 and 10 m. Docu-
mentation is scanty, except for an occasional aerial photograph
(P. infestans) (2). Secondary foci near the primary focus are usually
incorporated into that primary focus during its expansion (11).

Where the long-distance mechanism is very active relative to
the short-distance mechanism, disease distribution in the field
may become patchy without distinct foci, as is often seen with
P. recondita on wheat. Several pathogenic fungi have more than
two dispersal mechanisms. Often the additional (third or higher
mechanism) is man-made. Multiple dispersal mechanisms form
an interesting and useful subject of further research.

APPENDIX

Mathematical formulation of the diffusion theory consists of
two partial differential equations (36). The diffusion equation
describing behavior of spores is based on the assumption that,
except for the initial infection, there is no external source of
spores. This can be formulated as:

dS(r,t . . - ;
1}}—) = Net migration effect — deposition + production (A.l)
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in which r is a vector in space, ¢ stands for time, and dS(r,7)/
dt denotes the rate of change of spore density S(r,f) at r and
t. The net migration effect is described as:

Net migration effect = D V%5(r,) (A.2)
in which D is the diffusion coefficient, and V? denotes calculation
of second derivatives of S(r,) with respect to space parameters
x and y. The term deposition from equation A.l is described
as:

Deposition = 85(r,?) (A.3)
in which 8 is the deposition rate. Finally, following Vanderplank
(30), the term production is described as:

Production = R[I'(r,t—p) — I'(r,t—p—1i)] (A.4)
in which I'(r,?) is the lesion density at r and ¢, R is the number
of spores produced by a sporulating lesion per unit of time, p
is the latent period, and i is the infectious period. Equation A.2
assumes that a lesion starts production of spores at time p after
its initialization and produces spores during the infectious period,

i, at a constant rate R. Substitution of equations A.2, A.3, and
A.4 for A.l gives the first equation of the diffusion theory:

aS(r,t
_'5'::_} = DV%S(r,t) — 8S5\(r,1)

+ R [[(r,t—p) — T(r,;t—p—1i)]

(A.5)

Not every spore deposited on a healthy plant tissue will infect
that tissue. The rate of production of new lesions at point r and
time ¢ is equal to the spore deposition rate on noninfected sites
of leaves, f(r,r), multiplied by the probability of infection P,

dl'(r,t
6(: } = i'rlff(r,f)

(A.6)

The rate of spore deposition at r and ¢ initially is stated by
equation A.3. This rate should be corrected for removal of spores
from the epidemic (spores that are dead, fall on the soil, and
so on) and for spores that fall on infected plant tissue (since
a lesion cannot be infected again). Therefore, the deposition rate
of spores that can produce new lesions is:

S =(1— G)éS(r,1) T

(A7)

I'(r,1) )

in which G is the fraction of spores removed from the epidemic,
and the term (I — I'/T,,,) is the correction factor for multiple
infection. This factor is similar to the one used by Vanderplank
(30), but now I'(r,?) is the lesion density that varies with space
and time.

Substituting equation A.7 into A.6, the deposition rate of
effective spores which will produce new lesions is obtained.

al'(r,1) I'(r,0)
o E6S(r,1) (l = T )

(A.8)

in which £ = P,,, (1 — G) is the inoculum effectiveness (35).
Equation A.8—the generalized Vanderplank equation—is the
second equation of the diffusion theory of focus development
in plant diseases.

The present study elaborates on the dual dispersal mechanism
describing the short- and long-distance spore dispersal mecha-
nisms. Therefore, the model uses two diffusion equations of the
A.5 type and one of the A.8 type. The first equation describes
dispersal of spores by the short-distance mechanism and uses
S| (r,t) as the density of spores and D; and 8, as coefficients,
whereas the production term must be multiplied by F (the
proportion of spores dispersed by the short-distance mechanism).
The second equation describes dispersal of spores by the long-
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distance mechanism and uses S,(r,?) as the density of spores and
D, and 8, as coefficients, whereas the production term must be
multiplied by 1 — F (the proportion of spores dispersed by the
long-distance mechanism). The third equation describes changes
in the lesion density as a result of the deposition of spores dispersed
by either mechanism. Therefore, the deposition term 8S(r,?) in
equation A.8 must be replaced by the sum &, S,(r,) + 8, 5y(r,1)
(see Materials and Methods).
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